1
|
Masciullo V, Susini T, Corrado G, Stepanova M, Baroni A, Renda I, Castiglione F, Minimo C, Bellacosa A, Chiofalo B, Vizza E, Scambia G. Nuclear Expression of β-Catenin Is Associated with Improved Outcomes in Endometrial Cancer. Diagnostics (Basel) 2022; 12:diagnostics12102401. [PMID: 36292090 PMCID: PMC9600744 DOI: 10.3390/diagnostics12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Beta-catenin is involved in intercellular adhesion and participates in the Wnt signaling pathway. This study evaluated the expression pattern and prognostic value of β-catenin in a series of endometrial carcinoma patients. Immunohistochemical analyses were used to assess the expression and subcellular localization of β-catenin from tissue sections of 74 patients with endometrial carcinoma. No correlation was found between beta-catenin expression and clinicopathological parameters. Patients expressing nuclear β-catenin (n = 13; 16%) showed a more favorable prognosis than patients expressing membranous β-catenin; the 5-year disease-related survival rate was 100% for cases expressing nuclear β-catenin, compared with 73.8% (SE 0.08) of cases expressing membranous β-catenin (p = 0.04). Although statistical significance was not reached (p = 0.15), cases expressing nuclear β-catenin showed a 5-year disease-free survival rate of 90.9% (SE 0.08) compared with 67.4% (SE 0.08) of cases expressing membranous β-catenin. Univariate Cox analysis revealed that membranous β-catenin expression was found to be associated with a relative risk of death of 33.9 (p = 0.04). The stage of disease (p = 0.0006), histology (p = 0.003), and grading (p = 0.008) were also significantly correlated with disease-free survival according to univariate Cox analyses. Determining β-catenin expression and localization patterns may predict survival in patients with endometrial cancer and, therefore, should be considered a potential prognostic marker of disease.
Collapse
Affiliation(s)
- Valeria Masciullo
- Division of Gynecologic Surgery, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Tommaso Susini
- Department of Obstetrics and Gynecology, University of Florence, 50121 Florence, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Marina Stepanova
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alessandro Baroni
- Division of Gynecologic Surgery, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Irene Renda
- Department of Pathology, University of Florence, 50121 Florence, Italy
| | | | - Corrado Minimo
- Department of Pathology and Laboratory Medicine, Albert Einstein Medical Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
- Correspondence: ; Tel.: +39-06-5266-2433
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
2
|
A case of nasal low-grade non-intestinal-type adenocarcinoma with aberrant CDX2 expression and a novel SYN2-PPARG gene fusion in a 13-year-old girl. Virchows Arch 2019; 474:619-623. [PMID: 30666415 DOI: 10.1007/s00428-019-02524-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
We report the first patient (a 13-year-old girl) with a sinonasal low-grade non-intestinal-type adenocarcinoma showing aberrant CDX2 expression both within morular areas and in the tubular component and demonstrate for the first time a SYN2-PPARG gene fusion in this tumor type. The tumor arose from the nasal septum and had not spread beyond the nasal cavity.
Collapse
|
3
|
Wang L, Rambau PF, Kelemen LE, Anglesio MS, Leung S, Talhouk A, Köbel M. Nuclear β-catenin and CDX2 expression in ovarian endometrioid carcinoma identify patients with favourable outcome. Histopathology 2019; 74:452-462. [DOI: 10.1111/his.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/12/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Linyuan Wang
- Department of Pathology and Laboratory Medicine; University of Calgary; Calgary AB Canada
| | - Peter F Rambau
- Department of Pathology and Laboratory Medicine; University of Calgary; Calgary AB Canada
- Department of Pathology; Catholic University of Health and Allied Science; Mwanza Tanzania
| | - Linda E Kelemen
- Hollings Cancer Center and Medical University of South Carolina; Charleston USA
| | - Michael S Anglesio
- Department of Obstetrics and Gynaecology; Robert HN Ho Research Centre; University of British Columbia; Vancouver BC Canada
| | - Samuel Leung
- Department of Pathology; University of British Colombia and British Colombia Cancer Agency; Vancouver BC Canada
| | - Aline Talhouk
- Department of Pathology; University of British Colombia and British Colombia Cancer Agency; Vancouver BC Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine; University of Calgary; Calgary AB Canada
| |
Collapse
|
4
|
Sue S, Shibata W, Kameta E, Sato T, Ishii Y, Kaneko H, Miwa H, Sasaki T, Tamura T, Kondo M, Maeda S. Intestine-specific homeobox (ISX) induces intestinal metaplasia and cell proliferation to contribute to gastric carcinogenesis. J Gastroenterol 2016; 51:949-60. [PMID: 26872890 DOI: 10.1007/s00535-016-1176-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Helicobacter pylori induces chronic inflammation and intestinal metaplasia (IM) through genetic and epigenetic changes and activation of intracellular signaling pathways that contribute to gastric carcinogenesis. However, the precise mechanism of IM in gastric carcinogenesis has not been fully elucidated. We previously found that intestine-specific homeobox (ISX) mRNA expression increased in organoids cultured from Helicobacter-infected mouse mucosa. In this study, we elucidate the role of ISX in the development of IM and gastric carcinogenesis. METHODS ISX expression was assessed in Helicobacter-infected mouse and human gastric mucosa. MKN45 gastric cancer cells were co-cultured with H. pylori to determine whether Helicobacter infection induced ISX expression. We established stable MKN45 transfected cells expressing ISX (Stable-ISX MKN45) and performed a spheroid colony formation assay and a xenograft model. We performed ISX immunohistochemistry in cancer and adjacent gastric tissues. RESULTS ISX expression was increased in mouse and human gastric mucosa infected with Helicobacter. The presence of IM and H. pylori infection in human stomach was correlated with ISX expression. H. pylori induced ISX mRNA and protein expression. CDX1/2, cyclinD1, and MUC2 were upregulated in Stable-ISX MKN45, whereas MUC5AC was downregulated. Stable-ISX MKN45 cells formed more spheroid colonies, and had high tumorigenic ability. ISX expression in gastric cancer and adjacent mucosa were correlated. CONCLUSIONS ISX expression induced by H. pylori infection may lead to IM and hyperproliferation of gastric mucosa through CDX1/2 and cyclinD1 expression, contributing to gastric carcinogenesis.
Collapse
Affiliation(s)
- Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wataru Shibata
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Eri Kameta
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasuaki Ishii
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Haruo Miwa
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Toshihide Tamura
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
5
|
Transcriptional upregulation of HIF-1α by NF-κB/p65 and its associations with β-catenin/p300 complexes in endometrial carcinoma cells. J Transl Med 2013; 93:1184-93. [PMID: 24042437 DOI: 10.1038/labinvest.2013.111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/19/2013] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible factor (HIF)-1α, which has a major role in cell adaptation to hypoxia, is mainly regulated at post-translational levels. Recently, HIF-1α mRNA was also shown to be upregulated by several signal pathways under normoxic conditions. Here we focused on relationships of HIF-1α with NF-κB and β-catenin signaling in endometrial carcinomas (Em Cas). Long-term exposure of Ishikawa cells to cobalt chloride (CoCl2), which is known to mimic the effect of hypoxia, caused a decrease in the growth, along with increased HIF-1α protein but not mRNA expression. In contrast, short-term exposure resulted in a rapid and transient increase in HIF-1α mRNA expression along with stabilization of nuclear NF-κB/p65 (p65). Transfection of p65 increased HIF-1α expression through activation of the promoter, whereas overexpression of HIF-1α also activated NF-κB-dependent transcription, indicating the existence of a positive feedback loop. In addition, HIF-1α was indirectly associated with nuclear β-catenin through interactions with p300, leading to slight enhancement of both HIF-1α- and β-catenin-mediated transcriptional activity. In clinical samples, biphasic upregulation of HIF-1α expression was observed in normal endometrial glandular components during the menstrual cycle, with the labeling indices showing significantly higher values in the early secretory stage. Significantly higher values for phosphorylated p65 and nuclear β-catenin were also observed in HIF-1α-positive than -negative lesions of Em Cas, in contrast to significantly lower Ki-67 status. These data therefore suggest that transcriptional associations with HIF-1α and NF-κB, as well as β-catenin/p300 complexes, may contribute to modulation of changes in tumor cell kinetics in response to a hypoxic condition in Em Cas.
Collapse
|
6
|
Takahashi H, Yoshida T, Matsumoto T, Kameda Y, Takano Y, Tazo Y, Inoue H, Saegusa M. Frequent β-catenin gene mutations in atypical polypoid adenomyoma of the uterus. Hum Pathol 2013; 45:33-40. [PMID: 24182564 DOI: 10.1016/j.humpath.2013.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
Atypical polypoid adenomyoma (APA) is an uncommon polypoid lesion of the uterus. To clarify the mechanism of its histogenesis, we examined the functional role of β-catenin, with reference to expression of p21(waf1), cyclin D1, cyclin E, CD10, and α-smooth muscle actin (SMA), as well as cell proliferation, in 7 lesions. In the epithelial components, expression of nuclear β-catenin, p21(waf1), and cyclin D1 was increased in a stepwise fashion from normal tissue through complex atypical hyperplasia and adenomyoma to APA lesions, particularly in squamous morular areas, whereas cell proliferation, as well as cyclin E expression, was significantly decreased in the latter. Similar findings were evident in the stromal lesions, with the exception of a case of nuclear β-catenin. In addition, coexpression of CD10 and α-SMA markers was observed in the stromal components in 3 APA cases, in line with the results of normal secretory endometrial and adenomyoma samples, suggesting that cells progress to myofibromatous cells in response to differentiation-promoting events. Finally, β-catenin gene (CTNNB1) mutations were detected in all APA cases, the single nucleotide substitutions being in the epithelial but not the stromal components. These findings suggest that activation of β-catenin signaling, probably secondary to the gene abnormalities, plays an important role in the formation of the complex epithelial architecture in APAs, leading to inhibition of cell proliferation through overexpression of p21(waf1). In contrast, changes in the stromal cell phenotype may occur through a shift from CD10 to α-SMA immunopositivity, independent of CTNNB1 status.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yoshida T, Hashimura M, Kuwata T, Matsumoto T, Suzuki E, Tazo Y, Nakajima H, Inukai M, Saegusa M. Transcriptional regulation of the alpha-1 type II collagen gene by nuclear factor B/p65 and Sox9 in the chondrocytic phenotype of uterine carcinosarcomas. Hum Pathol 2013; 44:1780-8. [PMID: 23618358 DOI: 10.1016/j.humpath.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/15/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022]
Abstract
Uterine carcinosarcomas (U-CSs) are considered monoclonal in origin, but little is known about the mechanisms for establishment of heterologous sarcomatous components. Here, we examine the functional roles of nuclear factor κB (NF-κB)/p65 and Sox9 in the transcriptional regulation of alpha-1 type II collagen (COL2A1), a hallmark of chondrogenesis, during morphologic change in the direction of the chondrocytic phenotype. In 32 cases of U-CS, both phosphorylated p65 and Sox9 expression were colocalized in Col2A1-positive sarcomatous components, particularly in cartilaginous elements, with strongly positive correlation (ρ = 0.72, P = .005). A positive association of Col2A1 expression between protein (immunohistochemistry) and messenger RNA (in situ hybridization) assays was evident in sarcomatous components, whereas 9 cases also showed distinct positive signals for the messenger RNA without protein expression in carcinomatous elements, probably through a posttranscriptional and/or posttranslational modulation mechanism. In the Ishikawa endometrial cancer line, overexpression of p65 could activate transcription of COL2A1 promoter-intron reporters through binding to specific NF-κB sites in the first intron, along with up-regulation of Sox9. Exogenous induction of Sox9 also caused an increase in transcription of COL2A1, in contrast to a repression of the p65-mediated COL2A1 transcription, suggesting the existence of a negative feedback loop. These data, therefore, suggest that NF-κB/p65 signaling, as well as Sox9, may contribute to changes in the morphology of U-CS cells toward the chondrocytic phenotype through modulation of COL2A1 transcription.
Collapse
Affiliation(s)
- Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth's short tail mice. PLoS Genet 2013; 9:e1003204. [PMID: 23436999 PMCID: PMC3578775 DOI: 10.1371/journal.pgen.1003204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
Danforth's short tail (Sd) is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus approximately 12-kb upstream of Ptf1a. We found that insertion of the transposon caused overexpression of three neighboring genes, Gm13344, Gm13336, and Ptf1a, in Sd mutant embryos and that the Sd phenotype was not caused by disruption of an as-yet-unknown gene in the candidate locus. Using multiple knockout and knock-in mouse models, we demonstrated that misexpression of Ptf1a, but not of Gm13344 or Gm13336, in the notochord, hindgut, cloaca, and mesonephros was sufficient to replicate the Sd phenotype. The ectopic expression of Ptf1a in the caudal embryo resulted in attenuated expression of Cdx2 and its downstream target genes T, Wnt3a, and Cyp26a1; we conclude that this is the molecular basis of the Sd phenotype. Analysis of Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney. Caudal regression syndrome (CRS) is a congenital heterogeneous constellation of caudal anomalies that includes varying degrees of agenesis of the spinal column, anorectal malformations, and genitourinary anomalies. Its pathogenesis is unclear. However, it could be the result of excessive physiologic regression of the embryonic caudal region based on analyses of the various mouse mutants carrying caudal agenesis. Among the mouse mutants, the Danforth's short tail (Sd) mouse is considered a best model for human CRS. Sd is a semidominant mutation, characterized by spinal defects, urogenital defects, and anorectal malformations, thus showing phenotypic similarity to human CRS. Although Sd is known to map to mouse chromosome 2, little is known about the molecular nature of the mutation. Here, we demonstrate an insertion of one type of retrotransposon near the Ptf1a gene. This resulted in ectopic expression of Ptf1a gene in the caudal region of the embryo and downregulation of Cdx2 and its downstream targets, leading to characteristic phenotypes in Sd mouse. Thus, Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.
Collapse
|
9
|
Multiple microRNAs induced by Cdx1 suppress Cdx2 in human colorectal tumour cells. Biochem J 2012; 447:449-55. [PMID: 22849325 DOI: 10.1042/bj20120434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian transcriptional factors, Cdx1 and Cdx2 (Cdx is caudal-type homeobox) are paralogues and critical for the cellular differentiation of intestinal or colorectal epithelia. It has been reported previously that in Cdx1 transgenic or knockout mice, endogenous Cdx2 levels are inversely correlated with Cdx1 levels. Recently, we found that exogenous Cdx1 expression can suppress Cdx2 in a human colorectal tumour cell line, SW480, although the underlying molecular mechanisms were unclear. In the present study, we show that several microRNAs induced by exogenous Cdx1 expression directly bind to the CDX2 mRNA 3'UTR (untranslated region) to destabilize these transcripts, finally leading to their degradation. Using microarray analysis, we found that several miRNAs that were computationally predicted to target CDX2 mRNAs are up-regulated by exogenous Cdx1 expression in SW480 cells. Among these molecules, we identified miR-9, miR-16 and miR-22 as having the potential to suppress Cdx2 through the binding of the 3'UTR to its transcript. Importantly, simultaneous mutations of both the miR-9- and miR-16-binding sites in the CDX2 3'UTR were shown to be sufficient to block Cdx2 suppression. The results of the present study suggest a unique feature of miRNAs in which they contribute to homoeostasis by limiting the levels of transcription factors belonging to the same gene family.
Collapse
|
10
|
Qin R, Wang NN, Chu J, Wang X. Expression and significance of homeodomain protein Cdx2 in gastric carcinoma and precancerous lesions. World J Gastroenterol 2012; 18:3296-302. [PMID: 22783055 PMCID: PMC3391768 DOI: 10.3748/wjg.v18.i25.3296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/15/2011] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and significance of caudal-related homeobox transcription factor (Cdx2) in gastric carcinoma (GC) and precancerous lesions.
METHODS: The expression of Cdx2 in GC, precancerous lesions and normal gastric mucosa were detected using immunohistochemical method. Hematoxylin and eosin staining, alcian blue/periodic acid-schiff and high iron diamine/alcian blue staining were used to classify intestinal metaplasia (IM) and GC.
RESULTS: Cdx2 was not detected in normal gastric mucosa. Cdx2 expression was detected in 87.1% (101/116) of IM, 50% (36/72) of dysplasia and 48.2% (41/85) of GC. The Cdx2-expressing cells in IM were more prevalent than in dysplasia and carcinoma (P < 0.05). There was no relationship between Cdx2 expression and the classification of IM or the degree of dysplasia. Expression of Cdx2 was significantly higher in intestinal-type carcinoma than in diffuse and mixed-type carcinoma (P < 0.05). Positive expression of Cdx2 was mainly found in moderately to well differentiated GC. There was a negative association between nuclear Cdx2 expression and lymph node metastasis and tumor, nodes, metastasis stage of GC (P < 0.05). The patients with Cdx2-positive expression showed a higher survival rate than those with Cdx2-negative expression (P = 0.038). Multivariate analysis revealed that the expression of Cdx2 and lymph node metastasis were independent prognostic indicators of GC (P < 0.05).
CONCLUSION: Cdx2 may be closely related to IM and the intestinal-type GC and implicate better biological behavior and outcome. Cdx2 is useful for predicting the prognosis of GC.
Collapse
|
11
|
|
12
|
Poehlmann A, Kuester D, Malfertheiner P, Guenther T, Roessner A. Inflammation and Barrett's carcinogenesis. Pathol Res Pract 2012; 208:269-80. [PMID: 22541897 DOI: 10.1016/j.prp.2012.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrett's esophagus (BE) is one of the most common premalignant lesions in which normal squamous epithelium of the esophagus is replaced by metaplastic columnar epithelium. Esophageal adenocarcinoma (EA) develops through progression from BE to low- and high-grade dysplasia (LGD/HGD) and to adenocarcinoma. It is widely accepted that inflammation can increase cancer risk, promoting tumor progression. Therefore, inflammation is regarded as the seventh hallmark of cancer. In recent years, the inflammation-cancer connection of Barrett's carcinogenesis has been intensively studied, unraveling genetic abnormalities. Besides genetic alterations, inflammation is also epigenetically linked to loss of protein expression through transcriptional silencing via promoter methylation. Key mediators linking inflammation and Barrett's carcinogenesis include reactive oxygen species (ROS), NFκB, inflammatory cytokines, prostaglandins, and specific microRNAs (miRNAs). Therefore, the decipherment of molecular pathways that contain these and novel inflammatory key mediators is of major importance for diagnosis, therapy, and prognosis. The detailed elucidation of the signaling molecules involved in Barrett's carcinogenesis will be important for the development of pharmaceutical inhibitors. We herein give an overview of the current knowledge of the inflammation-mediated genetic and epigenetic alterations involved in Barrett's carcinogenesis. We highlight the role of oxidative stress and deregulated DNA damage checkpoints besides the NFκB pathway.
Collapse
Affiliation(s)
- A Poehlmann
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Sanchez-Ferras O, Coutaud B, Djavanbakht Samani T, Tremblay I, Souchkova O, Pilon N. Caudal-related homeobox (Cdx) protein-dependent integration of canonical Wnt signaling on paired-box 3 (Pax3) neural crest enhancer. J Biol Chem 2012; 287:16623-35. [PMID: 22457346 DOI: 10.1074/jbc.m112.356394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the earliest events in neural crest development takes place at the neural plate border and consists in the induction of Pax3 expression by posteriorizing Wnt·β-catenin signaling. The molecular mechanism of this regulation is not well understood, but several observations suggest a role for posteriorizing Cdx transcription factors (Cdx1/2/4) in this process. Cdx genes are known as integrators of posteriorizing signals from Wnt, retinoic acid, and FGF pathways. In this work, we report that Wnt-mediated regulation of murine Pax3 expression is indirect and involves Cdx proteins as intermediates. We show that Pax3 transcripts co-localize with Cdx proteins in the posterior neurectoderm and that neural Pax3 expression is reduced in Cdx1-null embryos. Using Wnt3a-treated P19 cells and neural crest-derived Neuro2a cells, we demonstrate that Pax3 expression is induced by the Wnt-Cdx pathway. Co-transfection analyses, electrophoretic mobility shift assays, chromatin immunoprecipitation, and transgenic studies further indicate that Cdx proteins operate via direct binding to an evolutionarily conserved neural crest enhancer of the Pax3 proximal promoter. Taken together, these results suggest a novel neural function for Cdx proteins within the gene regulatory network controlling neural crest development.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development, Department of Biological Sciences, and BioMed Research Center, Faculty of Sciences, University of Quebec, Montreal, Quebec H2X 3Y7, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci 2011; 56:3405-20. [PMID: 21984436 PMCID: PMC3750118 DOI: 10.1007/s10620-011-1885-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease. This review summarizes recent results involving squamous and intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanisms of BE to help in the development of improved management of GERD, BE, and EAC.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Roy C. Orlando
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA,Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA,Corresponding authors: Xiaoxin Luke Chen, MD, PhD, Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA. Tel: 919-530-6425; Fax: 919-530-7780;
| |
Collapse
|
15
|
Joo JH, Taxter TJ, Munguba GC, Kim YH, Dhaduvai K, Dunn NW, Degan WJ, Oh SP, Sugrue SP. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev Biol 2010; 345:191-203. [PMID: 20637749 DOI: 10.1016/j.ydbio.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/29/2023]
Abstract
Pinin (Pnn), a nuclear speckle-associated protein, has been shown to function in maintenance of epithelial integrity through altering expression of several key adhesion molecules. Here we demonstrate that Pnn plays a crucial role in small intestinal development by influencing expression of an intestinal homeobox gene, Cdx2. Conditional inactivation of Pnn within intestinal epithelia resulted in significant downregulation of a caudal type homeobox gene, Cdx2, leading to obvious villus dysmorphogenesis and severely disrupted epithelial differentiation. Additionally, in Pnn-deficient small intestine, we observed upregulated Tcf/Lef reporter activity, as well as misregulated expression/distribution of beta-catenin and Tcf4. Since regulation of Cdx gene expression has been closely linked to Wnt/beta-catenin signaling activity, we explored the possibility of Pnn's interaction with beta-catenin, a major effector of the canonical Wnt signaling pathway. Co-immunoprecipitation assays revealed that Pnn, together with its interaction partner CtBP2, a transcriptional co-repressor, was in a complex with beta-catenin. Moreover, both of these proteins were found to be recruited to the proximal promoter area of Cdx2. Taken together, our results suggest that Pnn is essential for tight regulation of Wnt signaling and Cdx2 expression during small intestinal development.
Collapse
Affiliation(s)
- Jeong-Hoon Joo
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saegusa M, Hashimura M, Kuwata T, Okayasu I. Transcriptional regulation of pro-apoptotic Par-4 by NF-kappaB/p65 and its function in controlling cell kinetics during early events in endometrial tumourigenesis. J Pathol 2010; 221:26-36. [PMID: 20186924 DOI: 10.1002/path.2680] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostatic apoptosis response-4 (Par-4) was first identified in prostatic cancer cells that were induced to undergo apoptosis. Recently, Par-4 has been suggested to be a tumour suppressor gene that plays a role in the development of endometrial carcinomas (ECs), but the exact mechanism remains to be clarified. Here we examined gene activation signalling cascades and influence on cell kinetics during endometrial tumourigenesis. In normal endometrium, constitutively high levels of Par-4 expression were observed in epithelial cells through the menstrual cycle, in contrast to the transient up-regulation in stromal components in the menstrual stage, correlated positively with the phospho-p65 (pp65) status and apoptosis. In contrast, most ECs exhibited significant down-regulation as compared to normal endometrium, with positive links only to pp65 expression. In EC cell lines, transfection of the NF-kappaB subunit p65 led to transactivation of Par-4 through specific binding to its promoter region, in contrast to the suppression by active Akt, suggesting that the balance between the two signals may be important to determine Par-4 expression levels. In addition, transient overexpression of Par-4 resulted in the induction of not only apoptosis but also senescence, through changes in the expression of bcl-2 and p21$;{{\rm WAF1}}$, respectively. Together, these findings suggest that a signalling cascade involving sequential activation of NF-kappaB/p65 and Par-4 may participate in relatively early events of endometrial tumourigenesis, leading to modulation of cell kinetics including apoptosis and cell cycle progression.
Collapse
Affiliation(s)
- Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | |
Collapse
|
17
|
Jedrusik A, Bruce AW, Tan MH, Leong DE, Skamagki M, Yao M, Zernicka-Goetz M. Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo. Dev Biol 2010; 344:66-78. [PMID: 20430022 PMCID: PMC2954319 DOI: 10.1016/j.ydbio.2010.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/30/2010] [Accepted: 04/16/2010] [Indexed: 11/21/2022]
Abstract
Divisions of polarised blastomeres that allocate polar cells to outer and apolar cells to inner positions initiate the first cell fate decision in the mouse embryo. Subsequently, outer cells differentiate into trophectoderm while inner cells retain pluripotency to become inner cell mass (ICM) of the blastocyst. Elimination of zygotic expression of trophectoderm-specific transcription factor Cdx2 leads to defects in the maintenance of the blastocyst cavity, suggesting that it participates only in the late stage of trophectoderm formation. However, we now find that mouse embryos also have a maternally provided pool of Cdx2 mRNA. Moreover, depletion of both maternal and zygotic Cdx2 from immediately after fertilization by three independent approaches, dsRNAi, siRNAi and morpholino oligonucleotides, leads to developmental arrest at much earlier stages than expected from elimination of only zygotic Cdx2. This developmental arrest is associated with defects in cell polarisation, reflected by expression and localisation of cell polarity molecules such as Par3 and aPKC and cell compaction at the 8- and 16-cell stages. Cells deprived of Cdx2 show delayed development with increased cell cycle length, irregular cell division and increased incidence of apoptosis. Although some Cdx2-depleted embryos initiate cavitation, the cavity cannot be maintained. Furthermore, expression of trophectoderm-specific genes, Gata3 and Eomes, and also the trophectoderm-specific cytokeratin intermediate filament, recognised by Troma1, are greatly reduced or undetectable. Taken together, our results indicate that Cdx2 participates in two steps leading to trophectoderm specification: appropriate polarisation of blastomeres at the 8- and 16-cell stage and then the maintenance of trophectoderm lineage-specific differentiation.
Collapse
Affiliation(s)
- Agnieszka Jedrusik
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo RJ, Funakoshi S, Lee HH, Kong J, Lynch JP. The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex. Carcinogenesis 2009; 31:159-66. [PMID: 19734199 DOI: 10.1093/carcin/bgp213] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cdx2 is an intestine-specific transcription factor known to regulate proliferation and differentiation. We have reported previously that Cdx2 limits the proliferation of human colon cancer cells by inhibiting the transcriptional activity of the beta-catenin-T-cell factor (TCF) bipartite complex. Herein we further elucidate this mechanism. Studies with a classic Cdx2 target gene and a canonical Wnt/beta-catenin/TCF reporter suggest that Cdx2 regulates these promoters by distinctly different processes. Specifically, inhibition of beta-catenin/TCF activity by Cdx2 does not require Cdx2 transcriptional activity. Instead, Cdx2 binds beta-catenin and disrupts its interaction with the DNA-binding TCF factors, thereby silencing beta-catenin/TCF target gene expression. Using Cdx2 mutants, we map the Cdx2 domains required for the inhibition of beta-catenin/TCF activity. We identify a subdomain in the N-terminus that is highly conserved and when mutated significantly reduces Cdx2 inhibition of beta-catenin/TCF transcriptional activity. Mutation of this subdomain also abrogates Cdx2's anti-proliferative effects in colon cancer cells. In summary, we conclude that Cdx2 binds beta-catenin and disrupts the beta-catenin-TCF complex. Considering the pivotal role of beta-catenin/TCF activity in driving proliferation of normal intestinal epithelial and colon cancer cells, our findings suggest a novel mechanism for Cdx2-mediated regulation of Wnt/beta-catenin signaling and cell proliferation.
Collapse
Affiliation(s)
- Rong-Jun Guo
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Colleypriest BJ, Palmer RM, Ward SG, Tosh D. Cdx genes, inflammation and the pathogenesis of Barrett's metaplasia. Trends Mol Med 2009; 15:313-22. [PMID: 19564133 DOI: 10.1016/j.molmed.2009.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 01/07/2023]
Abstract
Metaplasia is the conversion of one cell or tissue type to another and can predispose patients to neoplasia. Perhaps one of the best-known examples of metaplasia is Barrett's metaplasia (BM), a pathological condition in which the distal oesophageal epithelium switches from stratified squamous to intestinal-type columnar epithelium. BM predisposes to oesophageal adenocarcinoma and is the consequence of long-term acid bile reflux. The incidence of BM and oesophageal adenocarcinoma has risen dramatically in recent years. A key event in the pathogenesis of BM is the induction of oesophageal CDX2 expression. Importantly, recent data reveal the molecular mechanisms that link inflammation in the development of Barrett's metaplasia, CDX2 and the progression to cancer. This review highlights the relationship between inflammation, metaplasia and carcinogenesis.
Collapse
Affiliation(s)
- Benjamin J Colleypriest
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
20
|
Wani Y. Interpretation of diffuse Cdx2 expression in endometrioid adenocarcinoma in the absence of morules. Histopathology 2009; 54:495-7. [DOI: 10.1111/j.1365-2559.2009.03248.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Homeobox gene CDX2 inhibits human pancreatic cancer cell proliferation by down-regulating cyclin D1 transcriptional activity. Pancreas 2009; 38:49-57. [PMID: 19106744 DOI: 10.1097/mpa.0b013e31817fa2ba] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Homeobox gene caudal related homeobox gene 2 (CDX2) is an intestine-specific tumor suppressor gene. This study is intended to investigate the effect of CDX2 expression on cell proliferation and cyclin D1 expression in pancreatic cancer cells. METHODS Four pancreatic ductal adenocarcinoma cell lines (PancQGO-1, BxPC-3, MIAPaCa-2, CFPAC-1), 1 islet carcinoma cell line (QGP-1), and 1 adenosquamous carcinoma cell line (KP-3) were analyzed for CDX1 and CDX2 expression using real-time reverse transcription-polymerase chain reaction and Western blot analysis. Proliferation of pancreatic cancer cells was analyzed using WST-1 assay after CDX2 transfection. Luciferase assay was performed to examine the effects of CDX2 on cyclin D1 transcriptional activity. RESULTS CDX2 was expressed at a significantly higher level in QGP-1 cells than in KP-3 cells. Moreover, CDX2 was expressed at a middle level in 4 pancreatic ductal adenocarcinoma cells. Cell proliferation and cyclin D1 mRNA level were inhibited significantly after CDX2 transfection in pancreatic cancer cells. Furthermore, CDX2 inhibited exogenous nuclear factor kappaB-p65-induced luciferase gene expression in a dose-dependent manner. In addition, CDX2 inhibited pGL2HIVD1kappaB2-luciferase activity. CONCLUSIONS CDX2 might play a role in inhibiting cell proliferation and repressing cyclin D1 transcriptional activity through the proximal nuclear factor kappaB binding site in pancreatic cancer cells.
Collapse
|
22
|
Saegusa M, Hashimura M, Kuwata T, Hamano M, Watanabe J, Kawaguchi M, Okayasu I. Transcription factor Egr1 acts as an upstream regulator of beta-catenin signalling through up-regulation of TCF4 and p300 expression during trans-differentiation of endometrial carcinoma cells. J Pathol 2008; 216:521-32. [PMID: 18798221 DOI: 10.1002/path.2404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beta-catenin/TCF4/p300 pathway is involved in early signalling for trans-differentiation towards the morular phenotype of endometrial carcinoma cells, but little is known about the upstream regulators. Here we show that transcription factor early growth response 1 (Egr1) acts as an initial mediator through up-regulating the expression of TCF4 and p300. In an endometrial carcinoma cell line with abundant oestrogen receptor alpha, Egr1 expression at both mRNA and protein levels was significantly increased by serum and 17beta-oestradiol stimuli. Serum-stimulated cells also showed increased expression of TCF4 and p300, while inhibition of Egr1 by specific siRNAs resulted in decreased expression. Transfection of Egr1 led to transactivation of TCF4 as well as p300 genes, through specific binding to a promoter region, and thus in turn resulted in nuclear accumulation of beta-catenin mediated by the up-regulating TCF4. The overexpression also caused inhibition of beta-catenin/TCF4/p300-mediated transcription, probably through sequestration of p300. Egr1 promoter activity was increased by serum but not 17beta-oestradiol, in contrast to the marked repression associated with TCF4, p300, and Egr1 itself, indicating that the regulation involves several feedback loops. In clinical samples, cells immunopositive for nuclear Egr1, as well as beta-catenin and TCF4, were found to be sporadically distributed in glandular components of endometrial carcinoma with morules. A significant positive correlation between nuclear beta-catenin and TCF4 was observed, but no such link was evident for Egr1, probably due to the existence of negative feedback regulation. Together, these data indicate that Egr1 may participate in modulation of the beta-catenin/TCF4/p300 signalling pathway as an initial event during trans-differentiation of endometrial carcinoma cells, through its impact on several signalling networks.
Collapse
Affiliation(s)
- M Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wani Y, Notohara K, Fujisawa M. Aberrant expression of an "intestinal marker" Cdx2 in pyloric gland adenoma of the gallbladder. Virchows Arch 2008; 453:521-7. [PMID: 18843504 DOI: 10.1007/s00428-008-0680-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/08/2008] [Accepted: 09/23/2008] [Indexed: 12/12/2022]
Abstract
The aim of this study was to survey Cdx2 expression in pyloric gland adenoma (PGA) of the gallbladder. We reviewed 29 PGA cases, ten (34.4%) and seven (24.1%) of which showed intestinal metaplasia (IM) and squamous morule (SM), respectively. The immunostaining for Cdx2, beta-catenin, MUC5AC, MUC2, MUC6, and M-GGMC-1 was performed and scored (0 = negative, 1+ = <10%, 2+ = 10% to <30%, 3+ = 30% to <50%, 4+ = 50% to <70%, 5+ = 70-100%). Although its scores were relatively low (1+ or 2+), Cdx2 was frequently expressed in 27 cases (93.1%). Not only goblet and/or Paneth cells were positive but also non-IM cells in PGAs, as opposed to the lack of staining in the background mucosa. Cdx2 scores were not correlated with those of IM (p = 0.485) and MUC2 (p = 0.868). Of note, Cdx2 was positive in foci of SM in all seven cases, and there was a significant difference in Cdx2 scores between PGAs with and without SM. Furthermore, the p value of scores between Cdx2 and beta-catenin was 0.051, and both mean labeling indices (LIs) were correlated (r = 0.736). With Cdx2, higher morular LIs than glandular LIs were observed (p = 0.001). Finally, we concluded that aberrant Cdx2 expression in PGAs is closely associated with nuclear beta-catenin expression and SM in contrast with IM.
Collapse
Affiliation(s)
- Yoji Wani
- Department of Pathology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan.
| | | | | |
Collapse
|
24
|
Houghton O, Connolly LE, McCluggage WG. Morules in endometrioid proliferations of the uterus and ovary consistently express the intestinal transcription factor CDX2. Histopathology 2008; 53:156-65. [DOI: 10.1111/j.1365-2559.2008.03083.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|