1
|
Dong Y, Tan H, Wang L, Liu Z. Progranulin promoted the proliferation, metastasis, and suppressed apoptosis via JAK2-STAT3/4 signaling pathway in papillary thyroid carcinoma. Cancer Cell Int 2023; 23:191. [PMID: 37660003 PMCID: PMC10475200 DOI: 10.1186/s12935-023-03033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Progranulin (PGRN), a glycoprotein secreted by a wide range of epithelial cells and plays an important role in inflammatory mechanisms and tumor progression. In this study, the expression, and functions of PGRN in papillary thyroid carcinoma (PTC) was examined to explore the potential pathogenesis of PTC. METHODS Western blotting and qRT-PCR were used to detect the relationship between PGRN expression and clinicopathological characteristics of patients with PTC. PTC cell lines with PGRN overexpression and with PGRN knockdown were established to explore their effects on the biological behavior. Western blotting was used to detect the changes of relevant molecules and JAK2-STAT3/4 signaling pathway. Moreover, rescue experiments validated the involvement of the JAK2-STAT3/4 signaling pathway. And statistical analyses were analyzed using SPASS 21.0 and graph generation were performed using GraphPad Prism 8.0. RESULTS PGRN was overexpressed in PTC tissue and increased by 75% at mRNA level and 161% at relative protein level in the patients with lymph node metastasis compared to without lymph node metastasis. Besides, PGRN regulated and promoted PTC cell proliferation, migration, invasion, and inhibited cell apoptosis. With PGRN overexpressed, relevant molecules including the expression of BCL2/BAX, BCL2/BAD, CyclinD1, MMP2, vimentin and N-cadherin were increased, the expression level of E-cadherin was decreased, and the phosphorylation of JAK2 and STAT3/4 were increased. JAK inhibitor (JSI-124) rescued these changes of PTC cells induced by overexpressed PGRN. CONCLUSIONS These findings revealed that PGRN promote the progression of PTC through the JAK2-STAT3/4 pathway, and PGRN could be served as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yanxu Dong
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
2
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
3
|
Ventura E, Xie C, Buraschi S, Belfiore A, Iozzo RV, Giordano A, Morrione A. Complexity of progranulin mechanisms of action in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:333. [PMID: 36471440 PMCID: PMC9720952 DOI: 10.1186/s13046-022-02546-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.
Collapse
Affiliation(s)
- Elisa Ventura
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Christopher Xie
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Simone Buraschi
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonino Belfiore
- grid.8158.40000 0004 1757 1969Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Renato V. Iozzo
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonio Giordano
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
4
|
Combination of GP88 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Is an Independent Prognostic Factor for Bladder Cancer Patients. Cells 2021; 10:cells10071796. [PMID: 34359965 PMCID: PMC8306318 DOI: 10.3390/cells10071796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Urothelial bladder cancer (BCa) is the ninth most commonly diagnosed cancer worldwide and accounts for approximately 3% of global cancer diagnoses. We are interested in prognostic markers that may characterize tumor cells (TCs) and immune cells (ICs) and their relationship in BCa. A potential candidate marker that meets these criteria is progranulin (GP88), which is expressed separately in TCs and ICs. We analyzed GP88 expression by immunohistochemistry (IHC) in 196 muscle-invasive BCa samples using a tissue microarray. The immunoreactive score for GP88 staining in TCs and the percentage of GP88-positive ICs was determined. An easy cutoff for the staining status of TCs (positive vs. negative) and ICs (0% vs. >0%) and, more generally, negative vs. positive GP88 staining could be applied. We detected 93 patients (47.4%) and 92 patients (46.9%) with GP88-positive TCs or ICs, respectively. The IHC results were correlated with clinicopathological and survival data. Positive GP88 staining in TCs appeared to be an independent poor prognostic factor for disease-specific survival (DSS) (RR (relative risk) = 1.74; p = 0.009) and recurrence-free survival (RFS) (RR = 1.92; p = 0.002). In contrast, negative GP88 staining in ICs was an independent negative predictor for overall survival (OS) (RR = 2.18; p < 0.001), DSS (RR = 2.84; p < 0.001) and RFS (RR = 2.91; p < 0.001) in multivariate Cox’s regression analysis. When combining GP88 staining in TCs and ICs, a specific combination of GP88-positive TCs and GP88-negative ICs was associated with a 2.54-fold increased risk of death, a 4.21-fold increased risk of disease-specific death and a 4.81-fold increased risk of recurrence compared to GP88-negative TCs and GP88-positive ICs. In summary, GP88 positivity in TCs is a negative prognostic factor for DSS and RFS. In addition, GP88 positivity can mark ICs that are associated with a good prognosis (OS, DSS and RFS). The combination of GP88 staining in TCs and ICs appears to be a significant independent prognostic biomarker in muscle-invasive BCa.
Collapse
|
5
|
Serrero G. Progranulin/GP88, A Complex and Multifaceted Player of Tumor Growth by Direct Action and via the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:475-498. [PMID: 34664252 DOI: 10.1007/978-3-030-73119-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigation of the role of progranulin/GP88 on the proliferation and survival of a wide variety of cells has been steadily increasing. Several human diseases stem from progranulin dysregulation either through its overexpression in cancer or its absence as in the case of null mutations in some form of frontotemporal dementia. The present review focuses on the role of progranulin/GP88 in cancer development, progression, and drug resistance. Various aspects of progranulin identification, biology, and signaling pathways will be described. Information will be provided about its direct role as an autocrine growth and survival factor and its paracrine effect as a systemic factor as well as via interaction with extracellular matrix proteins and with components of the tumor microenvironment to influence drug resistance, migration, angiogenesis, inflammation, and immune modulation. This chapter will also describe studies examining progranulin/GP88 tumor tissue expression as well as circulating level as a prognostic factor for several cancers. Due to the wealth of publications in progranulin, this review does not attempt to be exhaustive but rather provide a thread to lead the readers toward more in-depth exploration of this fascinating and unique protein.
Collapse
|
6
|
Progranulin/EphA2 axis: A novel oncogenic mechanism in bladder cancer. Matrix Biol 2020; 93:10-24. [PMID: 32417448 DOI: 10.1016/j.matbio.2020.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023]
Abstract
The growth factor progranulin plays a critical role in bladder cancer by modulating tumor cell motility and invasion. Progranulin regulates remodeling of the actin cytoskeleton by interacting with drebrin, an actin binding protein that regulates tumor growth. We previously discovered that progranulin depletion inhibits epithelial-to-mesenchymal transition and markedly reduces in vivo tumor growth. Moreover, progranulin depletion sensitizes urothelial cancer cells to cisplatin treatment, further substantiating a pro-survival function of progranulin. Until recently, the progranulin signaling receptor remained unidentified, precluding a full understanding of progranulin action in tumor cell biology. We recently identified EphA2, a member of a large family of receptor tyrosine-kinases, as the functional receptor for progranulin. However, it is not established whether EphA2 plays an oncogenic role in bladder cancer. Here we demonstrate that progranulin, and not ephrin-A1, the canonical ligand for EphA2, is the predominant EphA2 ligand in bladder cancer. Progranulin evoked Akt- and Erk1/2-mediated EphA2 phosphorylation at Ser897, which could drive bladder tumorigenesis. We discovered that EphA2 depletion severely blunted progranulin-dependent motility and anchorage-independent growth, and sensitized bladder cancer cells to cisplatin treatment. We further defined the mechanisms of progranulin/EphA2-dependent motility by identifying liprin-α1 as a novel progranulin-dependent EphA2 interacting protein and establishing its critical role in cell motility. The discovery of EphA2 as the functional signaling receptor for progranulin and the identification of novel downstream effectors offer a new avenue for understanding the underlying mechanism of progranulin action and may constitute novel clinical and therapeutic targets in bladder cancer.
Collapse
|
7
|
Buraschi S, Morcavallo A, Neill T, Stefanello M, Palladino C, Xu SQ, Belfiore A, Iozzo RV, Morrione A. Discoidin Domain Receptor 1 functionally interacts with the IGF-I system in bladder cancer. Matrix Biol Plus 2020; 6-7:100022. [PMID: 33543020 PMCID: PMC7852334 DOI: 10.1016/j.mbplus.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance. We discovered that the collagen receptor DDR1 cross-talks with insulin growth factor I (IGF-I) signaling in bladder cancer DDR1 co-precipitates with the IGF-IR and the insulin receptor (IR), and is phosphorylated upon stimulation with IGF ligands This collagen receptor modulates IGF-I-evoked motility and anchorage-independent growth DDR1 complexes with Pyk2, myosin IIA, IGF-IR and/or IR and regulates actin dynamics
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alaide Morcavallo
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manuela Stefanello
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shi-Qiong Xu
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Expression of GP88 (Progranulin) Protein Is an Independent Prognostic Factor in Prostate Cancer Patients. Cancers (Basel) 2019; 11:cancers11122029. [PMID: 31888257 PMCID: PMC6966571 DOI: 10.3390/cancers11122029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer, the second most common cancer, is still a major cause of morbidity and mortality among men worldwide. The expression of the survival and proliferation factor progranulin (GP88) has not yet been comprehensively studied in PCa tumors. The aim of this study was to characterize GP88 protein expression in PCa by immunohistochemistry and to correlate the findings to the clinico-pathological data and prognosis. Immunohistochemical staining for GP88 was performed by TMA with samples from 442 PCa patients using an immunoreactive score (IRS). Altogether, 233 cases (52.7%) with negative GP88 staining (IRS < 2) and 209 cases (47.3%) with positive GP88 staining (IRS ≥ 2) were analyzed. A significant positive correlation was found for the GP88 IRS with the PSA value at prostatectomy and the cytoplasmic cytokeratin 20 IRS, whereas it was negatively associated with follow-up times. The association of GP88 staining with prognosis was further studied by survival analyses (Kaplan-Meier, univariate and multivariate Cox's regression analysis). Increased GP88 protein expression appeared as an independent prognostic factor for overall, disease-specific and relapse-free survival in all PCa patients. Interestingly, in the subgroup of younger PCa patients (≤65 years), GP88 positivity was associated with a 3.8-fold (p = 0.004), a 6.0-fold (p = 0.008) and a 3.7-fold (p = 0.003) increased risk for death, disease-specific death and occurrence of a relapse, respectively. In the PCa subgroup with negative CK20 staining, GP88 positivity was associated with a 1.8-fold (p = 0.018) and a 2.8-fold increased risk for death and disease-specific death (p = 0.028). Altogether, GP88 protein positivity appears to be an independent prognostic factor for PCa patients.
Collapse
|
9
|
Daya M, Loilome W, Techasen A, Thanee M, Sa-Ngiamwibool P, Titapun A, Yongvanit P, Namwat N. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway. Onco Targets Ther 2018; 11:395-408. [PMID: 29403285 PMCID: PMC5783154 DOI: 10.2147/ott.s155511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Progranulin (PGRN) is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA). However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K) and phosphorylated Akt (pAkt) proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT) revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In conclusion, our findings imply that PGRN modulates cell proliferation by dysregulating the G1 phase, inhibiting apoptosis, and that it plays a role in the EMT affecting CCA cell motility, possibly via the PI3K/pAkt pathway.
Collapse
Affiliation(s)
- Minerva Daya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines.,Cholangiocarcinoma Research Institute
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute.,Faculty of Associated Medical Science
| | | | | | - Attapol Titapun
- Department of Pathology.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| |
Collapse
|
10
|
Xu SQ, Buraschi S, Tanimoto R, Stefanello M, Belfiore A, Iozzo RV, Morrione A. Analysis of Progranulin-Mediated Akt and MAPK Activation. Methods Mol Biol 2018; 1806:121-130. [PMID: 29956273 PMCID: PMC9186102 DOI: 10.1007/978-1-4939-8559-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Progranulin has emerged in recent years as an important regulator of various biological functions including cell proliferation, wound healing, motility, and protection from apoptosis. Progranulin is also critical for transformation as established in several cancer models.Progranulin biological responses elicit through the activation of the Akt and MAPK pathways, which are critical for progranulin downstream signaling.In this chapter various experimental approaches aiming at detecting progranulin-mediated Akt and MAPK activation will be discussed.
Collapse
Affiliation(s)
- Shi-Qiong Xu
- Biology of Prostate Cancer Program, Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Simone Buraschi
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryuta Tanimoto
- Biology of Prostate Cancer Program, Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manuela Stefanello
- Biology of Prostate Cancer Program, Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V Iozzo
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Morrione
- Biology of Prostate Cancer Program, Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Abstract
The purpose of this brief overview of the progranulin protein is to provide a sense of the range and extent of the roles of progranulin in normal physiology and pathology. Progranulin has received attention due to its role in neurodegeneration, where mutation of a single copy of GRN, the gene encoding progranulin, results in frontotemporal dementia, whereas viral delivery of progranulin to the brains of mice exhibiting Parkinson's or Alzheimer's disease phenotypes inhibits the progression of the neurodegenerative phenotypes. Of equal importance, progranulin protects tissues against the harmful effects of poorly controlled inflammation and promotes tissue regeneration after injury at a multitude of sites throughout the body. Progranulin is overexpressed by many types of cancer and contributes to their progression. Given suitable analytical methods and model systems, progranulin offers a wealth of research possibilities.
Collapse
Affiliation(s)
- Andrew Bateman
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Program in Metabolic Diseases and Their Complications, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hugh P J Bennett
- Department of Medicine, McGill University, Montreal, QC, Canada
- Program in Metabolic Diseases and Their Complications, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
12
|
Tanimoto R, Palladino C, Xu SQ, Buraschi S, Neill T, Gomella LG, Peiper SC, Belfiore A, Iozzo RV, Morrione A. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin. Matrix Biol 2017; 64:27-39. [PMID: 28433812 DOI: 10.1016/j.matbio.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Shi-Qiong Xu
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Leonard G Gomella
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen C Peiper
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Department of Health, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Urology, Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, Morrione A, Iozzo RV. EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 2016; 215:687-703. [PMID: 27903606 PMCID: PMC5146997 DOI: 10.1083/jcb.201603079] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The receptor for the growth factor progranulin has remained unclear. Neill et al. show that the Ephrin receptor tyrosine kinase EphA2 is a functional signaling receptor for progranulin and mediates its effects in capillary morphogenesis and autoregulation. Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Atul Goyal
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Catherine Sharpe
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Elizabeth Natkanski
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main 60323, Germany
| | - Andrea Morrione
- Department of Urology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 .,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
14
|
Buraschi S, Xu SQ, Stefanello M, Moskalev I, Morcavallo A, Genua M, Tanimoto R, Birbe R, Peiper SC, Gomella LG, Belfiore A, Black PC, Iozzo RV, Morrione A. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin. Oncotarget 2016; 7:39980-39995. [PMID: 27220888 PMCID: PMC5129986 DOI: 10.18632/oncotarget.9556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Shi-Qiong Xu
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Manuela Stefanello
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Alaide Morcavallo
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Marco Genua
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Ryuta Tanimoto
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Ruth Birbe
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Leonard G. Gomella
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Antonino Belfiore
- Department of Health and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Peter C. Black
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Andrea Morrione
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| |
Collapse
|
15
|
Xu SQ, Buraschi S, Morcavallo A, Genua M, Shirao T, Peiper SC, Gomella LG, Birbe R, Belfiore A, Iozzo RV, Morrione A. A novel role for drebrin in regulating progranulin bioactivity in bladder cancer. Oncotarget 2016; 6:10825-39. [PMID: 25839164 PMCID: PMC4484422 DOI: 10.18632/oncotarget.3424] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.
Collapse
Affiliation(s)
- Shi-Qiong Xu
- Department of Urology and Biology of Prostate Cancer Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alaide Morcavallo
- Department of Urology and Biology of Prostate Cancer Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Health and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marco Genua
- Department of Urology and Biology of Prostate Cancer Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University School of Medicine, Showamachi, Maebashi, Japan
| | - Stephen C Peiper
- Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard G Gomella
- Department of Urology and Biology of Prostate Cancer Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Secretory leukocyte protease inhibitor is a survival and proliferation factor for castration-resistant prostate cancer. Oncogene 2016; 35:4807-15. [DOI: 10.1038/onc.2016.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 12/22/2022]
|
17
|
Tanimoto R, Lu KG, Xu SQ, Buraschi S, Belfiore A, Iozzo RV, Morrione A. Mechanisms of Progranulin Action and Regulation in Genitourinary Cancers. Front Endocrinol (Lausanne) 2016; 7:100. [PMID: 27512385 PMCID: PMC4961702 DOI: 10.3389/fendo.2016.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022] Open
Abstract
The growth factor progranulin has emerged in recent years as a critical regulator of transformation in several cancer models, including breast cancer, glioblastomas, leukemias, and hepatocellular carcinomas. Several laboratories, including ours, have also demonstrated an important role of progranulin in several genitourinary cancers, including ovarian, endometrial, cervical, prostate, and bladder tumors, where progranulin acts as an autocrine growth factor thereby modulating motility and invasion of transformed cells. In this review, we will focus on the mechanisms of action and regulation of progranulin signaling in genitourinary cancers with a special emphasis on prostate and bladder tumors.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kuojung G. Lu
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shi-Qiong Xu
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Simone Buraschi
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Antonino Belfiore
- Department of Health Sciences, Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Renato V. Iozzo
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Morrione
- Biology of Prostate Cancer Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- *Correspondence: Andrea Morrione,
| |
Collapse
|
18
|
Tanimoto R, Morcavallo A, Terracciano M, Xu SQ, Stefanello M, Buraschi S, Lu KG, Bagley DH, Gomella LG, Scotlandi K, Belfiore A, Iozzo RV, Morrione A. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology 2015; 156:58-70. [PMID: 25365768 PMCID: PMC4272403 DOI: 10.1210/en.2014-1590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Departments of Urology (R.T., A.Morc., M.T., S.-Q.X., M.S., K.G.L., D.H.B., L.G.G., A.Morr.), Biology of Prostate Cancer Program (L.G.G., A.Morr.), and Pathology, Anatomy, and Cell Biology (S.B., R.V.I.) and Cancer Cell Biology and Signaling Program (R.V.I.), Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Health Sciences (A.Morc., M.S., A.B.), Endocrinology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and CRS Development of Biomolecular Therapies (M.T., K.S.), Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Franco R, Zappavigna S, Gigantino V, Luce A, Cantile M, Cerrone M, Facchini G, Perdonà S, Pignata S, Di Lorenzo G, Chieffi S, Vitale G, De Sio M, Sgambato A, Botti G, Yousif AM, Novellino E, Grieco P, Caraglia M. Urotensin II receptor determines prognosis of bladder cancer regulating cell motility/invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:48. [PMID: 24893613 PMCID: PMC4061920 DOI: 10.1186/1756-9966-33-48] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022]
Abstract
Background Non Muscle Invasive Bladder Transitional Cancer (NMIBC) and Muscle Invasive Bladder Transitional Cancer (MIBC)/invasive have different gene profile and clinical course. NMIBC prognosis is not completely predictable, since the relapse rate is higher than 20%, even in the form of MIBC. The aim of this study is to evaluate if UTR expression can discriminate between NMIBC and MIBC and predict the risk of relapses in NMIBCs. Methods We have investigated upon urotensin-II (UII) receptor (UTR) expression in vivo in 159 patients affected by NMIBC. The biological role of UTR was also investigated in vitro. UTR expression was evaluated in a tissue-micro-array, consisting of normal, NMIBC and invasive bTCC samples. Results UTR discriminated between NMIBC and MIBC and showed a significant correlation between low UTR expression and shorter disease free survival in NMIBC. The superagonist UPG84 induced growth suppression at nM concentrations on 3/4 cell lines. Bladder cancer cell treatment with the antagonist urantide or the knock-down of UTR with a specific shRNA significantly blocked both the motility and invasion of bladder cancer cells. Conclusions The evaluation of UTR expression can discriminate between NMIBC at high and low risk of relapse. Moreover, our data suggest that UTR is involved in the regulation of motility, invasion and proliferation of bladder cancer cells. High UTR expression is an independent prognostic factor of good prognosis for NMIBC regulating motility and invasion of bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|
20
|
Romanello M, Piatkowska E, Antoniali G, Cesaratto L, Vascotto C, Iozzo RV, Delneri D, Brancia FL. Osteoblastic cell secretome: a novel role for progranulin during risedronate treatment. Bone 2014; 58:81-91. [PMID: 24120669 PMCID: PMC5072534 DOI: 10.1016/j.bone.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022]
Abstract
It is well established that osteoblasts, the key cells involved in bone formation during development and in adult life, secrete a number of glycoproteins harboring autocrine and paracrine functions. Thus, investigating the osteoblastic secretome could yield important information for the pathophysiology of bone. In the present study, we characterized for the first time the secretome of human Hobit osteoblastic cells. We discovered that the secretome comprised 89 protein species including the powerful growth factor progranulin. Recombinant human progranulin (6nM) induced phosphorylation of mitogen-activated protein kinase in both Hobit and osteocytic cells and induced cell proliferation and survival. Notably, risedronate, a nitrogen-containing bisphosphonate widely used in the treatment of osteoporosis, induced the expression and secretion of progranulin in the Hobit secretome. In addition, our proteomic study of the Hobit secretome revealed that risedronate induced the expression of ERp57, HSP60 and HSC70, three proteins already shown to be associated with the prevention of bone loss in osteoporosis. Collectively, our findings unveil novel targets of risedronate-evoked biological effects on osteoblast-like cells and further our understanding of the mechanisms of action of this currently used compound.
Collapse
Affiliation(s)
- Milena Romanello
- Laboratory of Regional Centre for Rare Diseases, University Hospital, Santa Maria della Misericordia, 33100 Udine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Genua M, Xu SQ, Buraschi S, Peiper SC, Gomella LG, Belfiore A, Iozzo RV, Morrione A. Proline-rich tyrosine kinase 2 (Pyk2) regulates IGF-I-induced cell motility and invasion of urothelial carcinoma cells. PLoS One 2012; 7:e40148. [PMID: 22859931 PMCID: PMC3408023 DOI: 10.1371/journal.pone.0040148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/01/2012] [Indexed: 12/02/2022] Open
Abstract
The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. We have recently demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues and promotes motility and invasion of urothelial carcinoma cells. These effects require IGF-I-induced Akt- and MAPK-dependent activation of paxillin. The latter co-localizes with focal adhesion kinases (FAK) at dynamic focal adhesions and is critical for promoting motility of urothelial cancer cells. FAK and its homolog Proline-rich tyrosine kinase 2 (Pyk2) modulate paxillin activation; however, their role in regulating IGF-IR-dependent signaling and motility in bladder cancer has not been established. In this study we demonstrate that FAK was not required for IGF-IR-dependent signaling and motility of invasive urothelial carcinoma cells. On the contrary, Pyk2, which was strongly activated by IGF-I, was critical for IGF-IR-dependent motility and invasion and regulated IGF-I-dependent activation of the Akt and MAPK pathways. Using immunofluorescence and AQUA analysis we further discovered that Pyk2 was overexpressed in bladder cancer tissues as compared to normal tissue controls. Significantly, in urothelial carcinoma tissues there was increased Pyk2 localization in the nuclei as compared to normal tissue controls. These results provide the first evidence of a specific Pyk2 activity in regulating IGF-IR-dependent motility and invasion of bladder cancer cells suggesting that Pyk2 and the IGF-IR may play a critical role in the invasive phenotype in urothelial neoplasia. In addition, Pyk2 and the IGF-IR may serve as novel biomarkers with diagnostic and prognostic significance in bladder cancer.
Collapse
Affiliation(s)
- Marco Genua
- Endocrine Mechanisms and Hormone Action Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Shi-Qiong Xu
- Endocrine Mechanisms and Hormone Action Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Simone Buraschi
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stephen C. Peiper
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Leonard G. Gomella
- Endocrine Mechanisms and Hormone Action Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Antonino Belfiore
- Endocrinology, Department of Health, University of Catanzaro, Catanzaro, Italy
| | - Renato V. Iozzo
- Cancer Cell Biology and Signaling Program, Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrea Morrione
- Endocrine Mechanisms and Hormone Action Program, Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, Iozzo RV, Belfiore A, Morrione A. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem 2012; 287:11422-36. [PMID: 22318726 DOI: 10.1074/jbc.m111.252478] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.
Collapse
Affiliation(s)
- Alaide Morcavallo
- Department of Urology and Endocrine Mechanisms and Hormone Action Program, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Loei H, Tan HT, Lim TK, Lim KH, So JBY, Yeoh KG, Chung MCM. Mining the gastric cancer secretome: identification of GRN as a potential diagnostic marker for early gastric cancer. J Proteome Res 2012; 11:1759-72. [PMID: 22204653 DOI: 10.1021/pr201014h] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastric cancer is the second leading cause of cancer deaths worldwide, and currently, there are no clinically relevant biomarkers for gastric cancer diagnosis or prognosis. In this study, we applied a 2D-LC-MS/MS based approach, in combination with iTRAQ labeling, to study the secretomes of the gastric cancer cell lines AGS and MKN7. By performing a comparative analysis between the conditioned media and the whole cell lysates, our workflow allowed us to differentiate the bona fide secreted proteins from the intracellular contaminants within the conditioned media. Ninety proteins were found to have higher abundance in the conditioned media as compared to the whole cell lysates of AGS and MKN7 cells. Using a signal peptide and nonclassical secretion prediction tool and an online exosome database, we demonstrated that up to 92.2% of these 90 proteins can be exported out of the cells by classical or nonclassical secretory pathways. We then performed quantitative comparisons of the secretomes between AGS and MKN7, identifying 43 differentially expressed secreted proteins. Among them, GRN was found to be frequently expressed in gastric tumor tissues, but not in normal gastric epithelia by immunohistochemistry. Sandwich ELISA assay also showed elevation of serum GRN levels in gastric cancer patients, particularly those with early gastric cancer. Receiver operating characteristic (ROC) curves analysis confirmed that serum GRN can provide diagnostic discriminations for gastric cancer patients.
Collapse
Affiliation(s)
- Hendrick Loei
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , 8 Medical Drive, Singapore 117597
| | | | | | | | | | | | | |
Collapse
|
24
|
Fassina A, Cappellesso R, Guzzardo V, Dalla Via L, Piccolo S, Ventura L, Fassan M. Epithelial-mesenchymal transition in malignant mesothelioma. Mod Pathol 2012; 25:86-99. [PMID: 21983934 DOI: 10.1038/modpathol.2011.144] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Epithelial-mesenchymal transition is a physiopathological process by which epithelial cells acquire mesenchymal shape and properties. Malignant mesothelioma is histologically characterized by the concomitant presence of epithelioid and sarcomatoid features, the latter being associated to worse prognosis, thus suggesting a role of epithelial-mesenchymal transition in this dual phenotype. We studied 109 malignant mesotheliomas (58 epithelioid, 26 sarcomatoid, and 25 biphasic) by immunohistochemistry and qRT-PCR analysis, and demonstrated a substantial switch from epithelial markers (E-cadherin, β-catenin, and cytokeratins 5/6) to mesenchymal markers (N-cadherin, vimentin, α-smooth muscle actin, Snail, Slug, Twist, ZEB1, ZEB2, S100A4, MMP2, and MMP9) through epithelioid to biphasic and sarcomatoid histotypes. In agreement with these findings, the ectopic expression of miR-205 (a repressor of ZEB1 and ZEB2 expression) in MeT-5A (mesothelial cell line), H2452 (an epithelioid malignant mesothelioma cell line) and MSTO-211H (a biphasic malignant mesothelioma cell line) not only induced a significant reduction of ZEB1 and ZEB2 and a consequent up-regulation of E-cadherin gene expression, but also inhibited migration and invasion. Moreover, miR-205 was significantly down-regulated in biphasic and sarcomatoid histotypes (qRT-PCR and in situ hybridization analyses). Collectively, our findings indicate that epithelial-mesenchymal transition has a significant part in the morphological features of malignant mesothelioma. In particular, miR-205 down-regulation correlated significantly with both a mesenchymal phenotype and a more aggressive behavior.
Collapse
Affiliation(s)
- Ambrogio Fassina
- Department of Diagnostic Medical Sciences and Special Therapies, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Iozzo RV, Buraschi S, Genua M, Xu SQ, Solomides CC, Peiper SC, Gomella LG, Owens RC, Morrione A. Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem 2011; 286:34712-21. [PMID: 21840990 DOI: 10.1074/jbc.m111.262766] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently discovered that the insulin-like growth factor receptor I (IGF-IR) is up-regulated in human invasive bladder cancer and promotes migration and invasion of transformed urothelial cells. The proteoglycan decorin, a key component of the tumor stroma, can positively regulate the IGF-IR system in normal cells. However, there are no available data on the role of decorin in modulating IGF-IR activity in transformed cells or in tumor models. Here we show that the expression of decorin inversely correlated with IGF-IR expression in low and high grade bladder cancers (n = 20 each). Decorin bound with high affinity IGF-IR and IGF-I at distinct sites and negatively regulated IGF-IR activity in urothelial cancer cells. Nanomolar concentrations of decorin promoted down-regulation of IRS-1, one of the critical proteins of the IGF-IR pathway, and attenuated IGF-I-dependent activation of Akt and MAPK. This led to decorin-evoked inhibition of migration and invasion upon IGF-I stimulation. Notably, decorin did not cause down-regulation of the IGF-IR in bladder, breast, and squamous carcinoma cells. This indicates that decorin action on the IGF-IR differs from its known activity on other receptor tyrosine kinases such as the EGF receptor and Met. Our results provide a novel mechanism for decorin in negatively modulating both IGF-I and its receptor. Thus, decorin loss may contribute to increased IGF-IR activity in the progression of bladder cancer and perhaps other forms of cancer where IGF-IR plays a role.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department Pathology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sacco E, Metalli D, Spinelli M, Manzoni R, Samalikova M, Grandori R, Morrione A, Traversa S, Alberghina L, Vanoni M. Novel RasGRF1-derived Tat-fused peptides inhibiting Ras-dependent proliferation and migration in mouse and human cancer cells. Biotechnol Adv 2011; 30:233-43. [PMID: 21620943 DOI: 10.1016/j.biotechadv.2011.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Mutations of RAS genes are critical events in the pathogenesis of different human tumors and Ras proteins represent a major clinical target for the development of specific inhibitors to use as anticancer agents. Here we present RasGRF1-derived peptides displaying both in vitro and in vivo Ras inhibitory properties. These peptides were designed on the basis of the down-sizing of dominant negative full-length RasGRF1 mutants. The over-expression of these peptides can revert the phenotype of K-RAS transformed mouse fibroblasts to wild type, as monitored by several independent biological readouts, including Ras-GTP intracellular levels, ERK activity, morphology, proliferative potential and anchorage independent growth. Fusion of the RasGRF1-derived peptides with the Tat protein transduction domain allows their uptake into mammalian cells. Chemically synthesized Tat-fused peptides, reduced to as small as 30 residues on the basis of structural constraints, retain Ras inhibitory activity. These small peptides interfere in vitro with the GEF catalyzed nucleotide dissociation and exchange on Ras, reduce cell proliferation of K-RAS transformed mouse fibroblasts, and strongly reduce Ras-dependent IGF-I-induced migration and invasion of human bladder cancer cells. These results support the use of RasGRF1-derived peptides as model compounds for the development of Ras inhibitory anticancer agents.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fassan M, D'Arca D, Letko J, Vecchione A, Gardiman MP, McCue P, Wildemore B, Rugge M, Shupp-Byrne D, Gomella LG, Morrione A, Iozzo RV, Baffa R. Mitostatin is down-regulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells. PLoS One 2011; 6:e19771. [PMID: 21573075 PMCID: PMC3089640 DOI: 10.1371/journal.pone.0019771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/04/2011] [Indexed: 12/02/2022] Open
Abstract
MITOSTATIN, a novel putative tumor suppressor gene induced by decorin overexpression, is expressed in most normal human tissues but is markedly down-regulated in advanced stages of mammary and bladder carcinomas. Mitostatin negatively affects cell growth, induces cell death and regulates the expression and activation levels of Hsp27. In this study, we demonstrated that ectopic expression of Mitostatin in PC3, DU145, and LNCaP prostate cancer cells not only induced a significant reduction in cell growth, but also inhibited migration and invasion. Moreover, Mitostatin inhibited colony formation in soft-agar of PC3 and LNCaP cells as well as tumorigenicity of LNCaP cells in nude mice. Conversely, targeting endogenous Mitostatin by siRNA and anti-sense strategies in PC3 and DU145 prostate cancer cells enhanced the malignant phenotype in both cell lines. In agreement of these anti-oncogenic roles, we discovered that Mitostatin was absent in ∼35% (n = 124) of prostate tumor samples and its overall reduction was associated with advanced cancer stages. Collectively, our findings indicate that MITOSTATIN may acts as a tumor suppressor gene in prostate cancer and provide a novel cellular and molecular mechanism to be further exploited and deciphered in our understanding of prostate cancer progression.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Diagnostic Medicine and Special Therapies, University of Padova, Padova, Italy
| | - Domenico D'Arca
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Juraj Letko
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrea Vecchione
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Division of Pathology, II Faculty of Medicine, University “La Sapienza,” Ospedale Sant'Andrea, Rome, Italy
| | - Marina P. Gardiman
- Department of Diagnostic Medicine and Special Therapies, University of Padova, Padova, Italy
| | - Peter McCue
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bernadette Wildemore
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Massimo Rugge
- Department of Diagnostic Medicine and Special Therapies, University of Padova, Padova, Italy
| | - Dolores Shupp-Byrne
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Leonard G. Gomella
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrea Morrione
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Raffaele Baffa
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
The welcome attitude of the 'omics community, journals and funders of research towards data sharing, coupled with successful implementations of data standards, has resulted in resource dissemination and a better understanding of many diseases, including cancer. Sharing experiment data is beneficial in terms of knowledge generation, allowing reproduction and validation of results. An adherence to a reporting guideline enables full-value extraction from costly data; this is an inexpensive method to increased quality without incurring disproportionate costs. For therapy data in particular, easy access to the range of new approaches and the ability to perform valid comparisons between these approaches would be especially useful. We discuss initiatives that support resource sharing and summarize three reporting guidelines for experiment data that have been adopted successfully. Finally, we introduce a new guideline that encompasses the diverse data types in therapeutic experiments, which is intended to be of use to the cancer therapeutics community.
Collapse
Affiliation(s)
- May Yong
- Paul O'Gorman Building, University College London, WC1E 6BT, UK
| | | |
Collapse
|
29
|
Cheung ST, Cheung PFY, Cheng CKC, Wong NCL, Fan ST. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 2011; 140:344-55. [PMID: 20682318 DOI: 10.1053/j.gastro.2010.07.049] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/23/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chemotherapy is used to treat unresectable liver cancer with marginal efficacy; this might result from hepatic cancer cells with stem cell and chemoresistant features. Gene expression profiling studies have shown that hepatic cancer cells express granulin-epithelin precursor (GEP); we investigated its role in hepatic cancer stem cell functions and chemoresistance. METHODS The effects of GEP and drug transporter signaling on chemoresistance were investigated in hepatic cancer stem cells. We analyzed the expression patterns of 142 clinical samples from liver tumors, adjacent nontumorous liver tissue, and liver tissue from patients who did not have cancer. RESULTS GEP regulated the expression of the adenosine triphosphate-dependent binding cassette (ABC)B5 drug transporter in liver cancer cells. Chemoresistant cells that expressed GEP had increased levels of ABCB5; suppression of ABCB5 sensitized the cells to doxorubicin uptake and apoptosis. Most cells that expressed GEP and ABCB5 also expressed the hepatic cancer stem cell markers CD133 and EpCAM; blocking ABCB5 reduced their expression. Expression levels of GEP and ABCB5 were correlated in human liver tumor samples. ABCB5 levels were increased in liver cancer cells compared with nontumor liver tissue from patients with cirrhosis or hepatitis, or normal liver tissue. ABCB5 expression was associated with the recurrence of hepatocellular carcinoma after partial hepatectomy. CONCLUSIONS Expression of GEP and ABCB5 in liver cancer stem cells is associated with chemoresistance and reduced survival times of patients with hepatocellular carcinoma. Reagents designed to target these proteins might be developed as therapeutics and given in combination with chemotherapy to patients with liver cancer.
Collapse
Affiliation(s)
- Siu Tim Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
30
|
STUBERT J, RICHTER DU, GERBER B, BRIESE V. Expression Pattern of Progranulin in the Human Placenta and Its Effect on Cell Proliferation in the Choriocarcinoma Cell Line BeWo. J Reprod Dev 2011; 57:229-35. [DOI: 10.1262/jrd.10-073k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Bernd GERBER
- Department of Obstetrics and Gynecology, University of Rostock
| | - Volker BRIESE
- Department of Obstetrics and Gynecology, University of Rostock
| |
Collapse
|
31
|
Wang WX, Kyprianou N, Wang X, Nelson PT. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res 2010; 70:9137-42. [PMID: 20884628 DOI: 10.1158/0008-5472.can-10-1684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlaps with miR-15, miR-16, and miR-195 due to a common 5' sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-argonaute RNA coimmunoprecipitation with downstream microarray analyses indicates that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. We further tested this association in human tumors. MiR-15 and miR-16 are known to be downregulated in chronic lymphocytic leukemia (CLL). Using pre-existing microarray datasets, we found that GRN expression is higher in CLL relative to nonneoplastic lymphocytes (P < 0.00001). By contrast, other prospective miR-15/miR-16 targets in the dataset (BCL-2 and cyclin D1) were not upregulated in CLL. Unlike in CLL, GRN was not upregulated in chronic myelogenous leukemia (CML) where miR-107 paralogs are not known to be dysregulated. Prior studies have shown that GRN is also upregulated, and miR-107 downregulated, in prostate carcinoma. Our results indicate that multiple members of the miR-107 gene group indeed repress GRN protein levels when transfected into prostate cancer cells. At least a dozen distinct types of cancer have the pattern of increased GRN and decreased miR-107 expression. These findings indicate for the first time that the mitogen and growth factor GRN is dysregulated via the miR-15/107 gene group in multiple human cancers, which may provide a potential common therapeutic target.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | | | |
Collapse
|
32
|
Sleegers K, Brouwers N, Van Broeckhoven C. Role of progranulin as a biomarker for Alzheimer's disease. Biomark Med 2010; 4:37-50. [PMID: 20387302 DOI: 10.2217/bmm.09.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serum or plasma progranulin (GRN) is a highly accurate of GRN-related frontotemporal lobar degeneration, which is caused by loss-of-function mutations in the GRN gene. Both null mutations and missense mutations in GRN have also been observed in patients with Alzheimer's disease. Here, the evidence for a role of circulating GRN as a biochemical biomarker in neurodegeneration is reviewed, with a specific focus on its relevance in Alzheimer's disease. We conclude that circulating GRN is a promising, nonintrusive biomarker that warrants screening in both patients with dementia of the Alzheimer type and people with mild cognitive impairment; specifically for, but not limited to, those that have a positive family history of neurodegenerative disease. Once a cure for GRN-related neurodegeneration becomes available, this biomarker will be an important tool in the effort to personalize treatment of dementia.
Collapse
|
33
|
Metalli D, Lovat F, Tripodi F, Genua M, Xu SQ, Spinelli M, Alberghina L, Vanoni M, Baffa R, Gomella LG, Iozzo RV, Morrione A. The insulin-like growth factor receptor I promotes motility and invasion of bladder cancer cells through Akt- and mitogen-activated protein kinase-dependent activation of paxillin. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2997-3006. [PMID: 20395438 DOI: 10.2353/ajpath.2010.090904] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. Aberrant IGF-IR signaling is implicated in several types of tumors, including carcinomas of the lung, breast, prostate, pancreas, liver, and colon. However, the contribution of the IGF-IR to the development of the transformed phenotype in urothelial cells has not been clearly established. In this study we demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues compared with nonmalignant controls. We have investigated the role of the IGF-IR in bladder cancer by using urothelial carcinoma-derived 5637 and T24 cells. Although activation of the IGF-IR did not appreciably affect their growth, it did promote migration and stimulate in vitro wound closure and invasion. These effects required the activation of the Akt and Mitogen-activated protein kinase (MAPK) pathways as well as IGF-I-induced Akt- and MAPK-dependent phosphorylation of paxillin, which relocated at dynamic focal adhesions and was necessary for promoting motility in bladder cancer cells. Our results provide the first evidence for a role of the IGF-IR in motility and invasion of bladder cancer cells and support the hypothesis that the IGF-IR may play a critical role in the establishment of the invasive phenotype in urothelial neoplasia. Thus, the IGF-IR may also serve as a novel biomarker for bladder cancer.
Collapse
Affiliation(s)
- David Metalli
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas CE, Sexton W, Benson K, Sutphen R, Koomen J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol Biomarkers Prev 2010; 19:953-9. [PMID: 20332277 DOI: 10.1158/1055-9965.epi-10-0069] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Urine is a useful source of protein for biomarker discovery and assessment because it is readily available, can be obtained by noninvasive collection methods, and enables monitoring of a wide range of physiologic processes and diseases. Urine aliquots provide enough protein for multiple analyses, combining current protocols with new techniques. CONCLUSIONS Standardized collection and processing protocols are now being established and new methods for protein detection and quantification are emerging to complement traditional immunoassays. The current state of urine collection, specimen processing, and storage is reviewed with regard to discovery and quantification of protein biomarkers for cancer.
Collapse
Affiliation(s)
- C Eric Thomas
- Proteomics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|