1
|
Villodre ES, Nguyen APN, Debeb BG. NDRGs in Breast Cancer: A Review and In Silico Analysis. Cancers (Basel) 2024; 16:1342. [PMID: 38611020 PMCID: PMC11011033 DOI: 10.3390/cancers16071342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The N-myc downstream regulated gene family (NDRGs) includes four members: NDRG1, NDRG2, NDRG3, and NDRG4. These members exhibit 53-65% amino acid identity. The role of NDRGs in tumor growth and metastasis appears to be tumor- and context-dependent. While many studies have reported that these family members have tumor suppressive roles, recent studies have demonstrated that NDRGs, particularly NDRG1 and NDRG2, function as oncogenes, promoting tumor growth and metastasis. Additionally, NDRGs are involved in regulating different signaling pathways and exhibit diverse cellular functions in breast cancers. In this review, we comprehensively outline the oncogenic and tumor suppressor roles of the NDRG family members in breast cancer, examining evidence from in vitro and in vivo breast cancer models as well as tumor tissues from breast cancer patients. We also present analyses of publicly available genomic and transcriptomic data from multiple independent cohorts of breast cancer patients.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anh P. N. Nguyen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Li YH, Sun CC, Chen PM, Chen HH. SGK1 Target Genes Involved in Heart and Blood Vessel Functions in PC12 Cells. Cells 2023; 12:1641. [PMID: 37371111 DOI: 10.3390/cells12121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is expressed in neuronal cells and involved in the pathogenesis of hypertension and metabolic syndrome, regulation of neuronal function, and depression in the brain. This study aims to identify the cellular mechanisms and signaling pathways of SGK1 in neuronal cells. In this study, the SGK1 inhibitor GSK650394 is used to suppress SGK1 expression in PC12 cells using an in vitro neuroscience research platform. Comparative transcriptomic analysis was performed to investigate the effects of SGK1 inhibition in nervous cells using mRNA sequencing (RNA-seq), differentially expressed genes (DEGs), and gene enrichment analysis. In total, 12,627 genes were identified, including 675 and 2152 DEGs at 48 and 72 h after treatment with GSK650394 in PC12 cells, respectively. Gene enrichment analysis data indicated that SGK1 inhibition-induced DEGs were enriched in 94 and 173 genes associated with vascular development and functional regulation and were validated using real-time PCR, Western blotting, and GEPIA2. Therefore, this study uses RNA-seq, DEG analysis, and GEPIA2 correlation analysis to identify positive candidate genes and signaling pathways regulated by SGK1 in rat nervous cells, which will enable further exploration of the underlying molecular signaling mechanisms of SGK1 and provide new insights into neuromodulation in cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-He Li
- Department of Laboratory Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Cheng Sun
- Physical Examination Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
3
|
Chen CJ, Shang HS, Huang YL, Tien N, Chen YL, Hsu SY, Wu RSC, Tang CL, Lien JC, Lee MH, Lu HF, Hsia TC. Bisdemethoxycurcumin suppresses human brain glioblastoma multiforme GBM 8401 cell migration and invasion via affecting NF-κB and MMP-2 and MMP-9 signaling pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2022; 37:2388-2397. [PMID: 35735092 DOI: 10.1002/tox.23604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Human glioblastoma (GBM) is one of the common cancer death in adults worldwide, and its metastasis will lead to difficult treatment. Finding compounds for future to develop treatment is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was isolated from the rhizome of turmeric (Curcuma longa), which has been shown to against many human cancer cells. In the present study, we evaluated the antimetastasis activity of BDMC in human GBM cells. Cell proliferation, cell viability, cellular uptake, wound healing, migration and invasion, and western blotting were analyzed. Results indicated that BDMC at 1.5-3 μM significantly decreased the cell proliferation by MTT assay. BDMC showed the highest uptake by cells at 3 h. After treatment of BDMC at 12-48 h significantly inhibited cell motility in GBM 8401 cells by wound healing assay. BDMC suppressed cell migration and invasion at 24 and 48 h treatment by transwell chamber assay. BDMC significantly decreased the levels of proteins associated with PI3K/Akt, Ras/MEK/ERK pathways and resulted in the decrease in the expressions of NF-κB, MMP-2, MMP-9, and N-cadherin, leading to the inhibition of cell migration and invasion. These findings suggest that BDMC may be a potential candidate for the antimetastasis of human GBM cells in the future.
Collapse
Affiliation(s)
- Chiung-Ju Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung City, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Lun Tang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung City, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int J Mol Sci 2022; 23:ijms23169365. [PMID: 36012631 PMCID: PMC9408851 DOI: 10.3390/ijms23169365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.
Collapse
|
5
|
Feng RB, Zhou QZ, Cheng R, Li P, Zhu ST, Min L, Zhang ST. Expression and Significance of N-myc downstream regulated gene 2 in the process of Esophageal Squamous Cell Carcinogenesis. Bioengineered 2022; 13:3275-3283. [PMID: 35048779 PMCID: PMC8973974 DOI: 10.1080/21655979.2022.2025685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been reported that the expression of tumor suppressor gene N-myc downstream-regulated gene 2 (NDRG2) was significantly reduced in human solid tumors, including esophageal squamous cell carcinoma (ESCC). This study aimed to explore whether the difference of NDRG2 expression exists in different stages of ESCC and provides a basis for the early diagnosis and prognosis of ESCC. Immunohistochemical staining was used to investigate the expression level of NDRG2 in samples from 91 patients with mild-to-moderate dysplasia, early ESCC, and advanced ESCC. The relationship between the expression of NDRG2 and clinicopathological characteristics of the patients was analyzed. The results showed that positive expression rates of NDRG2 in tissues adjacent to early ESCC (76.7%), or from mild-to-moderate dysplasia (74.1%), and early ESCC (83.3%) were significantly higher than in tissue from advanced ESCC (55.9%). The positive expression rate in advanced ESCC was significantly lower than in the other three tissue types (p < 0.05). There was a significant difference (p < 0.05) and correlation (Cramer’s V = 0.351, p = 0.019, <0.05) between the expression of NDRG2 and the clinical stage in the 64 patients with ESCC. In conclusion, this study found that the expression of NDRG2 gradually decreased with the progression of esophageal lesions into advanced ESCC. This difference in positive expression rate was more obvious in male patients and patients under 60 years of age. Therefore, the detection of NDRG2 plays an important role in differentiating early ESCC from advanced ESCC.
Collapse
Affiliation(s)
- Rui-Bing Feng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Qiao-Zhi Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
6
|
Lee A, Lim S, Oh J, Lim J, Yang Y, Lee MS, Lim JS. NDRG2 Expression in Breast Cancer Cells Downregulates PD-L1 Expression and Restores T Cell Proliferation in Tumor-Coculture. Cancers (Basel) 2021; 13:cancers13236112. [PMID: 34885221 PMCID: PMC8656534 DOI: 10.3390/cancers13236112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including breast cancer. Increased expression of programmed death ligand 1 (PD-L1) is frequently observed in human cancers. Despite its role in cancer cells, the effects of NDRG2 on PD-L1 expression and PD-L1-PD-1 pathway disruption have not been investigated. We demonstrated that NDRG2 overexpression inhibits PD-L1 expression in human breast cancer cells. Blocking T cell proliferation by coculture with 4T1 mouse tumor cells that express high levels of PD-L1 could be significantly reversed by NDRG2 overexpression in the same tumor cells. NDRG2 knockdown in NDRG2-transfected cells elicited the upregulation of PD-L1 expression and accelerated the inhibition of T cell proliferation. These findings were confirmed from The Cancer Genome Atlas (TCGA) data that PD-L1 expression in basal and triple-negative breast cancer (TNBC) patients, but not in luminal A or B cancer patients, was negatively correlated with the NDRG2 expression. Abstract (1) Background: The aim of the present study was to evaluate the effect of NDRG2 expression in regulating PD-L1 or PD-L2 on malignant breast cancer cells. (2) Methods: Overexpression and knockdown of the NDRG2 gene in human and mouse cancer cells were applied and quantitative real-time PCR and Western blot analysis were performed. T cell proliferation and TCGA analysis were conducted to validate negative correlation of the PD-L1 expression with the NDRG2 expression. (3) Results: We found that NDRG2 overexpression inhibits PD-L1 expression in human breast cancer cells through NF-κB signaling. NDRG2 overexpression in 4T1 mouse breast cancer cells followed by PD-L1 downregulation could block the suppressive activity of cancer cells on T cell proliferation and knockdown of NDRG2 expression enhanced the expression of PD-L1, leading to the inhibition of T cell proliferation by tumor cell coculture. Finally, we confirmed from TCGA data that PD-L1 expression in basal and triple-negative breast cancer patients was negatively correlated with the expression of NDRG2. Intriguingly, linear regression analysis using TNBC cell lines showed that the PD-L1 level was negatively associated with the NDRG2 expression level. (4) Conclusions: Our findings demonstrate that NDRG2 expression is instrumental in suppressing PD-L1 expression and restoring PD-L1-inhibited T cell proliferation activity in TNBC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jong-Seok Lim
- Correspondence: ; Tel.: +82-2-710-9560; Fax: +82-2-2077-7322
| |
Collapse
|
7
|
Suresh RV, Bradley EW, Higgs M, Russo VC, Alqahtani M, Huang W, Bakshi CS, Malik M. Nlrp3 Increases the Host's Susceptibility to Tularemia. Front Microbiol 2021; 12:725572. [PMID: 34690967 PMCID: PMC8527020 DOI: 10.3389/fmicb.2021.725572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (F. tularensis) is a Gram-negative, intracellular bacterium and the causative agent of a fatal human disease known as tularemia. The CDC has classified F. tularensis as a Tier 1 Category A select agent based on its ease of aerosolization, low infectious dose, past use as a bioweapon, and the potential to be used as a bioterror agent. Francisella has a unique replication cycle. Upon its uptake, Francisella remains in the phagosomes for a short period and then escapes into the cytosol, where the replication occurs. Francisella is recognized by cytosolic pattern recognition receptors, Absent In Melanoma 2 (Aim2) and Nacht LRR and PYD domains containing Protein 3 (Nlrp3). The recognition of Francisella ligands by Aim2 and Nlrp3 triggers the assembly and activation of the inflammasome. The mechanism of activation of Aim2 is well established; however, how Nlrp3 inflammasome is activated in response to F. tularensis infection is not known. Unlike Aim2, the protective role of Nlrp3 against Francisella infection is not fully established. This study investigated the role of Nlrp3 and the potential mechanisms through which Nlrp3 exerts its detrimental effects on the host in response to F. tularensis infection. The results from in vitro studies demonstrate that Nlrp3 dampens NF-κB and MAPK signaling, and pro-inflammatory cytokine production, which allows replication of F. tularensis in infected macrophages. In vivo, Nlrp3 deficiency results in differential expression of several genes required to induce a protective immune response against respiratory tularemia. Nlrp3-deficient mice mount a stronger innate immune response, clear bacteria efficiently with minimal organ damage, and are more resistant to Francisella infection than their wild-type counterparts. Together, these results demonstrate that Nlrp3 enhances the host's susceptibility to F. tularensis by modulating the protective innate immune responses. Collectively, this study advances our understanding of the detrimental role of Nlrp3 in tularemia pathogenesis.
Collapse
Affiliation(s)
- Ragavan V. Suresh
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Elizabeth W. Bradley
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vincenzo C. Russo
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Maha Alqahtani
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Wiehua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| |
Collapse
|
8
|
N-myc Downstream-Regulated Gene 2 (NDRG2) Function as a Positive Regulator of Apoptosis: A New Insight into NDRG2 as a Tumor Suppressor. Cells 2021; 10:cells10102649. [PMID: 34685629 PMCID: PMC8534062 DOI: 10.3390/cells10102649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene that increases tumor sensitivity to anticancer drugs, slows tumor progression, and inhibits metastasis. NDRG2 is suppressed in various aggressive tumor positions, whereas NDRG2 expression is associated with patient prognosis, such as an improved survival rate. In this review, we summarize the tumor suppressor mechanism of NDRG2 and provide information on the function of NDRG2 concerning the susceptibility of cells to apoptosis. NDRG2 increases the susceptibility to apoptosis in various physiological environments of cells, such as development, hypoxia, nutrient deprivation, and cancer drug treatment. Although the molecular and cell biological mechanisms of NDRG2 have not been fully elucidated, we provide information on the mechanisms of NDRG2 in relation to apoptosis in various environments. This review can assist the design of research regarding NDRG2 function and suggests the potential of NDRG2 as a molecular target for cancer patients.
Collapse
|
9
|
Wang J, Li T, Ma L, Liu G, Wang G, Kang J. NDRG2 inhibition facilitates angiogenesis of hepatocellular carcinoma. Open Med (Wars) 2021; 16:742-748. [PMID: 34013046 PMCID: PMC8114951 DOI: 10.1515/med-2021-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an angiogenesis-dependent tumor, and angiogenesis plays pivotal roles in progression and hematogenous metastasis. Upregulating NDRG2 expression could inhibit endothelial cell proliferation and tumor angiogenesis. However, the development of angiogenesis is a complicated and dynamic process, and the specific mechanisms that NDRG2 influences its progression are largely unknown. Conditioned media (CM) was collected from HCC cells. Cell viability, migration assay, tube formation, and western blot were used to evaluate the effect of NDRG2 on angiogenesis in HCC cells. ELISA assay was used to measure the level of VEGFA in CM. CM from NDRG2 knockdown cells significantly promoted HUVECs proliferation, migration, and tube formation compared with control cells. The level of VEGFA in CM was increased by NDRG2 knockdown relative to the control group. The expression of VEGFA, HIF-1α, and p-Akt was significantly increased in NDRG2 knockdown cells. CM from NDRG2 knockdown cells with VEGFA antibody failed to induce HUVEC proliferation, migration, and tube formation. YC-1 significantly inhibited the level of VEGFA in CM from NDRG2 knockdown cells. YC-1 also inhibited the expression of VEGFA and HIF-1α. Therefore, NDRG2 inhibition promoted the angiogenesis of HCC via VEGFA and may be used to be an anti-angiogenesis target.
Collapse
Affiliation(s)
- Jianlong Wang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Tao Li
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Lifeng Ma
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guochao Liu
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guiying Wang
- General Surgical Department, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China.,General Surgical Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Jiansheng Kang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| |
Collapse
|
10
|
Morishita K, Nakahata S, Ichikawa T. Pathophysiological significance of N-myc downstream-regulated gene 2 in cancer development through protein phosphatase 2A phosphorylation regulation. Cancer Sci 2021; 112:22-30. [PMID: 33128318 PMCID: PMC7780046 DOI: 10.1111/cas.14716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.
Collapse
Affiliation(s)
| | - Shingo Nakahata
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tomonaga Ichikawa
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
11
|
Leal-Gutiérrez JD, Elzo MA, Carr C, Mateescu RG. RNA-seq analysis identifies cytoskeletal structural genes and pathways for meat quality in beef. PLoS One 2020; 15:e0240895. [PMID: 33175867 PMCID: PMC7657496 DOI: 10.1371/journal.pone.0240895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
RNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.91±8.69 months. Tenderness, juiciness and connective tissue assessed by sensory panel, along with marbling, Warner-Bratzler Shear Force (WBSF) and cooking loss, were measured in longissimus dorsi muscle. Total RNA was extracted from muscle and one RNA-seq library per sample was constructed, multiplexed, and sequenced based on protocols by Illumina HiSeq-3000 platform to generate 2×101 bp paired-end reads. The overall read mapping rate using the Btau_4.6.1 reference genome was 63%. A total of 8,799 genes were analyzed using two different methodologies, an expression association and a DE analysis. A gene and exon expression association analysis was carried out using a meat quality index on all 80 samples as a continuous response variable. The expression of 208 genes and 3,280 exons from 1,565 genes was associated with the meat quality index (p-value ≤ 0.05). A gene and isoform DE evaluation was performed analyzing two groups with extreme WBSF, tenderness and marbling. A total of 676 (adjusted p-value≤0.05), 70 (adjusted p-value≤0.1) and 198 (adjusted p-value≤0.1) genes were DE for WBSF, tenderness and marbling, respectively. A total of 106 isoforms from 98 genes for WBSF, 13 isoforms from 13 genes for tenderness and 43 isoforms from 42 genes for marbling (FDR≤0.1) were DE. Cytoskeletal and transmembrane anchoring genes and pathways were identified in the expression association, DE and the gene enrichment analyses; these proteins can have a direct effect on meat quality. Cytoskeletal proteins and transmembrane anchoring molecules can influence meat quality by allowing cytoskeletal interaction with myocyte and organelle membranes, contributing to cytoskeletal structure and architecture maintenance postmortem.
Collapse
Affiliation(s)
- Joel D. Leal-Gutiérrez
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
12
|
Takarada-Iemata M. Roles of N-myc downstream-regulated gene 2 in the central nervous system: molecular basis and relevance to pathophysiology. Anat Sci Int 2020; 96:1-12. [PMID: 33174183 DOI: 10.1007/s12565-020-00587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a member of the NDRG family, whose members have multiple functions in cell proliferation, differentiation, and stress responses. NDRG2 is widely distributed in the central nervous system and is uniquely expressed by astrocytes; however, its role in brain function remains elusive. The clinical relevance of NDRG2 and the molecular mechanisms in which it participates have been reported by studies using cultured cells and specimens of patients with neurological disorders. In recent years, genetic tools, including several lines of Ndrg2-knockout mice and virus-mediated gene transfer, have improved understanding of the roles of NDRG2 in vivo. This review aims to provide an update of recent growing in vivo evidence that NDRG2 is involved in brain function, focusing on research of Ndrg2-knockout mice with neurological disorders such as brain tumors, chronic neurodegenerative diseases, and acute brain insults including brain injury and cerebral stroke. These studies demonstrate that NDRG2 plays diverse roles in the regulation of astrocyte reactivity, blood-brain barrier integrity, and glutamate excitotoxicity. Further elucidation of the roles of NDRG2 and their molecular basis may provide novel therapeutic approaches for various neurological disorders.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
13
|
Structural and Biophysical Analyses of Human N-Myc Downstream-Regulated Gene 3 (NDRG3) Protein. Biomolecules 2020; 10:biom10010090. [PMID: 31935861 PMCID: PMC7022630 DOI: 10.3390/biom10010090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/07/2023] Open
Abstract
The N-Myc downstream-regulated gene (NDRG) family belongs to the α/β-hydrolase fold and is known to exert various physiologic functions in cell proliferation, differentiation, and hypoxia-induced cancer metabolism. In particular, NDRG3 is closely related to proliferation and migration of prostate cancer cells, and recent studies reported its implication in lactate-triggered hypoxia responses or tumorigenesis. However, the underlying mechanism for the functions of NDRG3 remains unclear. Here, we report the crystal structure of human NDRG3 at 2.2 Å resolution, with six molecules in an asymmetric unit. While NDRG3 adopts the α/β-hydrolase fold, complete substitution of the canonical catalytic triad residues to non-reactive residues and steric hindrance around the pseudo-active site seem to disable the α/β-hydrolase activity. While NDRG3 shares a high similarity to NDRG2 in terms of amino acid sequence and structure, NDRG3 exhibited remarkable structural differences in a flexible loop corresponding to helix α6 of NDRG2 that is responsible for tumor suppression. Thus, this flexible loop region seems to play a distinct role in oncogenic progression induced by NDRG3. Collectively, our studies could provide structural and biophysical insights into the molecular characteristics of NDRG3.
Collapse
|
14
|
Porphyromonas gingivalis promotes the motility of esophageal squamous cell carcinoma by activating NF-κB signaling pathway. Microbes Infect 2019; 21:296-304. [DOI: 10.1016/j.micinf.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
|
15
|
SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2019; 67:91-104. [PMID: 31271889 DOI: 10.1016/j.semcancer.2019.06.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Sex-determining region Y-related (SRY) high-mobility group box 4 (SOX4) is a member of the group C subfamily of SOX transcription factors and promotes tumorigenesis by endowing cancer cells with survival, migratory, and invasive capacities. Emerging evidence has highlighted an unequivocal role for this transcription factor in mediating various signaling pathways involved in tumorigenesis, epithelial-to-mesenchymal transition (EMT), and tumor progression. During the last decade, numerous studies have highlighted the epigenetic interplay between SOX4-targeting microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and SOX4 and the subsequent modulation of tumorigenesis, invasion and metastasis. In this review, we summarize the current state of knowledge about the role of SOX4 in cancer development and progression, the epigenetic regulation of SOX4, and the potential utilization of SOX4 as a diagnostic and prognostic biomarker and its depletion as a therapeutic target.
Collapse
|
16
|
Han X, Tang J, Chen T, Ren G. Restoration of GATA4 expression impedes breast cancer progression by transcriptional repression of ReLA and inhibition of NF-κB signaling. J Cell Biochem 2018; 120:917-927. [PMID: 30187949 DOI: 10.1002/jcb.27455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
There are increasing reports of aberrant expression of GATA4, correlated with oncogenesis and malignant progression in some solid tumors, but whether GATA4 functions as an oncogenic driver or a tumor suppressor in carcinogenesis remains controversial. Because the role and mechanism of GATA4 in breast cancer (BrCa) remain poorly understood, we focused on the expression of GATA4 in BrCa cell lines and tissues and its mechanism in breast oncogenesis. Semiquantitative real-time polymerase chain reaction (RT-PCR), quantitative RT-PCR, Western blot analysis, and immunohistochemistry were used to detect expression of GATA4 in BrCa cell lines and adjacent breast tissues. Methylation statuses of the GATA4 promoter were studied using methylation-specific PCR in BrCa cell lines.The effects of GATA4 on proliferation, invasion, and cell cycle were also analyzed. Compared with adjacent breast tissue, GATA4 expression in BrCa tissue and cell lines was obviously lower and low expression levels of GATA4 predicted poor outcome. Methylation of GATA4 occurred in almost all of BrCa cell lines . GATA4 overexpression decreased viability, invasion, migration, and epithelial-to-mesenchymal transition of MB-231 and BT549 cells, and markedly induced cell cycle arrest and apoptosis. Exogenous expression GATA4 accompanied a significant alteration of MMP2, MMP3, E-cadherin, and N-cadherin expression and induction of the caspase-8 pathway. Moreover, GATA4 could directly repress RelA (p65) transcription, reduce the nuclear phosphorylation-p65 and upregulate inhibitor kappa B expression. Altogether, GATA4 plays a tumor-suppressive role via repression of NF-κB signaling in BrCa cells. Our findings suggest that GATA4 is a potential prognostic biomarker and gene therapeutic target for human BrCa.
Collapse
Affiliation(s)
- Xiaofan Han
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Chen
- Department of Human Anatomy, Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Synergic Inhibition of Lung Carcinoma 95-D Cell Proliferation and Invasion by Combination with (−)-Epigallocatechin-3-Gallate and Ascorbic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11859-018-1321-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
19
|
Takarada-Iemata M, Yoshikawa A, Ta HM, Okitani N, Nishiuchi T, Aida Y, Kamide T, Hattori T, Ishii H, Tamatani T, Le TM, Roboon J, Kitao Y, Matsuyama T, Nakada M, Hori O. N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia 2018; 66:1432-1446. [PMID: 29476556 DOI: 10.1002/glia.23315] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/22/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022]
Abstract
Disruption of the blood-brain barrier (BBB) following cerebral ischemia is closely related to the infiltration of peripheral cells into the brain, progression of lesion formation, and clinical exacerbation. However, the mechanism that regulates BBB integrity, especially after permanent ischemia, remains unclear. Here, we present evidence that astrocytic N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, may function as a modulator of BBB permeability following ischemic stroke, using a mouse model of permanent cerebral ischemia. Immunohistological analysis showed that the expression of NDRG2 increases dominantly in astrocytes following permanent middle cerebral artery occlusion (MCAO). Genetic deletion of Ndrg2 exhibited enhanced levels of infarct volume and accumulation of immune cells into the ipsilateral brain hemisphere following ischemia. Extravasation of serum proteins including fibrinogen and immunoglobulin, after MCAO, was enhanced at the ischemic core and perivascular region of the peri-infarct area in the ipsilateral cortex of Ndrg2-deficient mice. Furthermore, the expression of matrix metalloproteinases (MMPs) after MCAO markedly increased in Ndrg2-/- mice. In culture, expression and secretion of MMP-3 was increased in Ndrg2-/- astrocytes, and this increase was reversed by adenovirus-mediated re-expression of NDRG2. These findings suggest that NDRG2, expressed in astrocytes, may play a critical role in the regulation of BBB permeability and immune cell infiltration through the modulation of MMP expression following cerebral ischemia.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Akifumi Yoshikawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hieu Minh Ta
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Nahoko Okitani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuhiro Aida
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuko Kitao
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tomohiro Matsuyama
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawa-Machi, Nishinomiya, Hyogo, 663-8501, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
20
|
von Karstedt S. NDRG2 programs tumor-associated macrophages for tumor support. Cell Death Dis 2018; 9:294. [PMID: 29463798 PMCID: PMC5833842 DOI: 10.1038/s41419-018-0268-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Silvia von Karstedt
- Department of Translational Genomics, University Hospital of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Song W, Zhao C, Jiang R. Integrin-Linked Kinase Silencing Induces a S/G2/M Phases Cell Cycle slowing and Modulates Metastasis-Related Genes in SGC7901 Humancc Gastric Carcinoma Cells. TUMORI JOURNAL 2018; 99:249-56. [DOI: 10.1177/030089161309900221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and aim Integrin-linked kinase has been implicated in metastasis of human tumors. Recent studies have also shown that the down-regulation of integrin-linked kinase has anti-tumor potential by inhibiting the metastatic potential of several types of cultured human cancer cells. However, the mechanism by which integrin-linked kinase regulates metastasis in human gastric carcinoma is not fully clear. We investigated the effect of integrin-linked kinase deletion on metastasis-associated markers in human gastric carcinoma SGC-7901 cell lines. Methods We generated cell lines depleted for integrin-linked kinase. Cell adhesion and invasion were measured by the MTS assay and transwell assay. The cell cycle was measured by flow cytometry. Expression of metastasis-related genes was assessed by reporter assay, quantitative RT-PCR and western blotting. Results Our data showed an inhibitory effect on cell adhesion and invasion after silencing of integrin-linked kinase. The cell cycle was slowed in S/G2/M phases. Metastasis-related genes E-cadherin, MMP-2/9 and cystatin B, as well as the signaling molecules p-Akt, NF-κB, and AP-1 activation, were also modulated. Our results indicate that integrin-linked kinase plays an important role in metastasis of human gastric carcinoma cells. Conclusions Down-regulation of integrin-linked kinase resulted in the impairment of the metastatic potential of gastric tumor cells by regulating metastasis-related gene expression, by inhibiting the Akt pathway as well as the activity of transcription factors. Integrin-linked kinase could be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Wei Song
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Chunming Zhao
- Department of Opthalmology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Rui Jiang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Park S, Oh SS, Lee KW, Lee YK, Kim NY, Kim JH, Yoo J, Kim KD. NDRG2 contributes to cisplatin sensitivity through modulation of BAK-to-Mcl-1 ratio. Cell Death Dis 2018; 9:30. [PMID: 29348517 PMCID: PMC5833685 DOI: 10.1038/s41419-017-0184-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
The downregulation of N-Myc downstream-regulated gene 2 (NDRG2) is known to be associated with the progression and poor prognosis of several cancers. Sensitivity to anti-cancer may be associated with a good prognosis in cancer patients, and NDRG2, which is induced by p53, sensitizes the cells to chemotherapy. However, the unique function of NDRG2 as an inducer of apoptosis under chemotreatment has not been sufficiently studied. In this study, we investigated the role of NDRG2 in chemo-sensitivity, focusing on cisplatin in U937 histiocytic lymphoma, which has the loss-of-functional mutation in p53. NDRG2 promoted the sensitivity to cisplatin through the modulation of the BAK-to-Mcl-1 ratio. The degradation of Mcl-1 and increase in BAK were mediated by JNK activation and the eIF2α/p-eIF2α pathway, respectively, which depended on PKR activation in NDRG2-overexpressed U937 (U937-NDRG2) cells. NOX5 was highly expressed in U937-NDRG2 cells and contributed to ROS production after cisplatin treatment. ROS scavenging or NOX5-knockdown successfully inhibited the sensitivity of U937-NDRG2 cells to cisplatin. Taken together, these findings indicate that NDRG2 contributed to the increased sensitivity to ciplatin through the modulation of Bak-to-Mcl-1 ratio regulated by NOX5-ROS-PKR pathway; therefore, we suggest that NDRG2 may be a molecular target for improving the efficacy of drug treatment in cancer patients.
Collapse
Affiliation(s)
- Soojong Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Seok Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ki Won Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Kyeong Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Nae Yu Kim
- Department of Internal Medicine, Eulji University School of Medicine, Daejeon, 35233, Republic of Korea
| | - Joo Heon Kim
- Department of Pathology, Eulji University School of Medicine, Daejeon, 35233, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
23
|
Hu W, Yang Y, Fan C, Ma Z, Deng C, Li T, Lv J, Yao W, Gao J. Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers. Apoptosis 2018; 21:675-82. [PMID: 27113371 DOI: 10.1007/s10495-016-1244-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human N-Myc downstream-regulated gene 2 (NDRG2), located at chromosome 14q11.2, has been reported to be down-regulated and associated with the progression and prognosis of diverse cancers. Collectively, previous studies suggest that NDRG2 functions as a candidate tumor-suppressor gene; thus, up-regulation of NDRG2 protein might act as a promising therapeutic strategy for malignant tumors. The aim of this review was to comprehensively present the clinical and pathological significance of NDRG2 in human cancers.
Collapse
Affiliation(s)
- Wei Hu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Weiwei Yao
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
24
|
Golestan A, Ghaderi A, Mojtahedi Z. Effects of NDRG2 Overexpression on Metastatic Behaviors of HCT116 Colorectal Cancer Cell Line. Adv Pharm Bull 2017; 7:661-664. [PMID: 29399558 PMCID: PMC5788223 DOI: 10.15171/apb.2017.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/03/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose: N-myc downstream-regulated gene 2 (NDRG2) is frequently down-regulated in cancer, and plays an important role in the control of tumor growth and metastasis. Its manipulation has been suggested as a therapy in cancer. Here, we examined the outcome of NDRG2 overexpression on proliferation, invasion, migration and MMP activity of HCT116 colorectal cancer cell line. Methods: The HCT116 cell line (human colorectal cancer) was transfected with pCMV6-AC-GFP-NDRG2. 2,5diphenyltetrazolium bromide (MTT) assay was used to detect cell proliferation. The invasion and migration of the transfected cells were examined through transwell chambers while the MMP-9 activity was detected by the ability of the cells to digest gelatin. Results: Overexpression of NDRG2 by stable NDRG2 transfection decreased cell proliferation, migration and invasion ability, along with decreasing MMP-9 activity. Conclusion: Our data indicate that NDRG2 overexpression can suppress several aspect of tumorigenesis. Further investigations are necessitated to verify if NDRG2 molecule can be a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Ali Golestan
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mojtahedi
- Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Zhang M, Liu X, Wang Q, Ru Y, Xiong X, Wu K, Yao L, Li X. NDRG2 acts as a PERK co-factor to facilitate PERK branch and ERS-induced cell death. FEBS Lett 2017; 591:3670-3681. [DOI: 10.1002/1873-3468.12861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xiping Liu
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
- Department of Biochemistry and Molecular Biology; Zunyi Medical College; China
| | - Qinhao Wang
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Yi Ru
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xin Xiong
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology; Department of Gastroenterology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Libo Yao
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Xia Li
- State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| |
Collapse
|
26
|
Zhang M, Ren B, Li Z, Niu W, Wang Y. Expression of N-Myc Downstream-Regulated Gene 2 in Bladder Cancer and Its Potential Utility as a Urinary Diagnostic Biomarker. Med Sci Monit 2017; 23:4644-4649. [PMID: 28953854 PMCID: PMC5627538 DOI: 10.12659/msm.901610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Initial diagnosis of carcinoma of the urinary bladder remains challenging. N-Myc downstream-regulated gene 2 (NDRG2) has been reported to be closely correlated with cell differentiation and proliferation in various cancers. However, its clinical significance in diagnosis of bladder cancer remains unclear. The purpose of this study was to detect the expression of NDRG2 and investigate its diagnostic value in bladder cancer. MATERIAL AND METHODS We recruited 127 patients with bladder cancer and 97 healthy controls. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting analysis were conducted to measure the NDRG2 expression levels in urine of patients with bladder cancer, bladder cancer cell lines, and healthy controls. The correlations between NDRG2 expression and clinicopathological characteristics were analyzed by chi-square test, and the diagnostic value of NDRG2 was estimated by establishing a receiver operating characteristic (ROC) curve. RESULTS The relative NDRG2 expression were significantly downregulated both at mRNA and protein levels in urine of patients with bladder cancer and in cell lines, and its low expression was distinctively correlated with tumor grade and stage. The ROC curve showed NDRG2 could be a good diagnostic marker, with an AUC of 0.888, indicating high sensitivity and specificity. CONCLUSIONS NDRG2 was decreased in patients with bladder cancer and might be involved in the progression of this malignancy. Moreover, NDRG2 could be a potential independent diagnostic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Laboratory Medicine, Shangdong Provincial Hospital Affiliated to Shangdong University, Jinan, Shangdong, China (mainland)
| | - Bo Ren
- Department of Operation, Jinan Hospital, Jinan, Shangdong, China (mainland)
| | - Zhi Li
- Department of Supply, Jinan First People's Hospital, Jinan, Shangdong, China (mainland)
| | - Wenyan Niu
- Department of Supply, Jinan First People's Hospital, Jinan, Shangdong, China (mainland)
| | - Yueling Wang
- Department of Laboratory Medicine, Shangdong Provincial Hospital Affiliated to Shangdong University, Jinan, Shangdong, China (mainland)
| |
Collapse
|
27
|
In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol 2017; 327:1-12. [DOI: 10.1016/j.taap.2017.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
|
28
|
Cheng Q, Wu J, Zhang Y, Liu X, Xu N, Zuo F, Xu J. SOX4 promotes melanoma cell migration and invasion though the activation of the NF-κB signaling pathway. Int J Mol Med 2017. [PMID: 28627651 PMCID: PMC5504990 DOI: 10.3892/ijmm.2017.3030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SOX4 has been reported to be abnormally expressed in many types of cancer, including melanoma. However, its role in cell proliferation and metastasis remains controversial. In this study, SOX4 was downregulated or overexpressed in A375, A2058 and A875 melanoma cells by siRNA or lentivirus transfection, respectively. Cell metastasis was observed by Transwell assay. In an aim to elucidate the underlying mechanisms, we determined the expression of nuclear factor-κB (NF-κB) by real-time PCR assay and western blot analysis. Our data indicated that SOX4 knockdown inhibited melanoma cell migration and invasion. In the melanoma cells in which SOX4 was downregulated, the expression levels of NF-κB/p65, matrix metalloproteinase (MMP)2 and MMP9 were suppressed at both the mRNA and protein levels. Conversely, the overexpression of SOX4 promoted melanoma cell migration and invasion. In the melanoma cells in which SOX4 was overexpressed, the expression levels of NF-κB/p65, MMP2 and MMP9 were increased at both the mRNA and protein level. On the whole, our findings indicate that SOX4 promotes melanoma cell migration and invasion through the activation of the NF-κB/p65 signaling pathway. Thus, SOX4 may prove to be a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yaohua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Nan Xu
- Department of Dermatology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fuguo Zuo
- Department of Dermatology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
29
|
Yamamura A, Miura K, Karasawa H, Motoi F, Mizuguchi Y, Saiki Y, Fukushige S, Sunamura M, Shibata C, Unno M, Horii A. NDRG2 , suppressed expression associates with poor prognosis in pancreatic cancer, is hypermethylated in the second promoter in human gastrointestinal cancers. Biochem Biophys Res Commun 2017; 484:138-143. [DOI: 10.1016/j.bbrc.2017.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/29/2022]
|
30
|
Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-23. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
|
31
|
Wang J, Xie C, Pan S, Liang Y, Han J, Lan Y, Sun J, Li K, Sun B, Yang G, Shi H, Li Y, Song R, Liu X, Zhu M, Yin D, Wang H, Song X, Lu Z, Jiang H, Zheng T, Liu L. N-myc downstream-regulated gene 2 inhibits human cholangiocarcinoma progression and is regulated by leukemia inhibitory factor/MicroRNA-181c negative feedback pathway. Hepatology 2016; 64:1606-1622. [PMID: 27533020 DOI: 10.1002/hep.28781] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).
Collapse
Affiliation(s)
- Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Changming Xie
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jing Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Keyu Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Boshi Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Huawen Shi
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yuejin Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Dalong Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Huanlai Wang
- Department of General Surgery, Qiqihaer City Hospital of Traditional Chinese Medicine, Qiqihaer, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China. .,Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
32
|
Hong SN, Kim SJ, Kim ER, Chang DK, Kim YH. Epigenetic silencing of NDRG2 promotes colorectal cancer proliferation and invasion. J Gastroenterol Hepatol 2016; 31:164-71. [PMID: 26250123 DOI: 10.1111/jgh.13068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Genome-wide methylation arrays have revealed aberrant methylation of N-Myc downstream-regulated gene 2 (NDRG2) promoter in colorectal cancer (CRC). This study investigated the role of NDRG2 in colorectal carcinogenesis. METHODS The aberrant promoter methylation, mRNA, and protein expression of NDRG2 were evaluated in 27 pairs of human CRC and adjacent normal tissues and seven human CRC-derived cell-lines. After stable NDRG2 over-expressed RKO and DLD-1 human CRC cell-lines were constructed, in vitro functional assays, including colony formation, cell viability, proliferation, invasion and migration assays, and in vivo xenograft models were performed. RESULTS The promoter of NDRG2 was methylated in 89% human CRC tissue compared to adjacent normal colonic mucosa (7.4%; P < 0.001). High-level methylation of NDRG2 promoter was more prevalent in proximal CRC (P = 0.022) and advanced T stage (P = 0.039). NDRG2 mRNA and protein expression was down-regulated in 89% and 100% human CRC tissue, respectively. In human CRC cell-lines, the promoter of NDRG2 was methylated aberrantly and mRNA, and protein expression of NDRG2 was down-regulated. NDRG2 mRNA expression was reactivated by 5-aza-2'-deoxycytidine. Colony formation of NDRG2 over-expressing RKO cells was inhibited (P = 0.012), as was the viability, proliferation, and invasion of NDRG2 over-expressing DLD-1 cells (P < 0.001, P = 0.003, and P = 0.044, respectively). Tumor volume in xenograft mice transplanted with NDRG2 over-expressing RKO and DLD-1 cells was smaller than that in controls (P = 0.002 and P = 0.001, respectively). CONCLUSIONS Epigenetic silencing of NDRG2 induces proliferation and invasion of CRC and may be associated with proximal CRC and advanced T stage. NDRG2 methylation might serve as novel biomarker of CRC.
Collapse
Affiliation(s)
- Sung Noh Hong
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Jin Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun-Ran Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Kyung Chang
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Ho Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Gödeke J, Luxenburger E, Trippel F, Becker K, Häberle B, Müller-Höcker J, von Schweinitz D, Kappler R. Low expression of N-myc downstream-regulated gene 2 (NDRG2) correlates with poor prognosis in hepatoblastoma. Hepatol Int 2015; 10:370-6. [DOI: 10.1007/s12072-015-9686-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022]
|
34
|
Lee DG, Lee SH, Kim JS, Park J, Cho YL, Kim KS, Jo DY, Song IC, Kim N, Yun HJ, Park YJ, Lee SJ, Lee HG, Bae KH, Lee SC, Shim S, Kim YM, Kwon YG, Kim JM, Lee HJ, Min JK. Loss of NDRG2 promotes epithelial-mesenchymal transition of gallbladder carcinoma cells through MMP-19-mediated Slug expression. J Hepatol 2015; 63:1429-39. [PMID: 26292259 DOI: 10.1016/j.jhep.2015.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract and one of the most lethal forms of human cancer. However, there is limited information about the molecular pathogenesis of GBC. Here, we examined the functional role of the tumor suppressor N-myc downstream-regulated gene 2 (NDRG2) and the underlying molecular mechanisms of disease progression in GBC. METHODS Clinical correlations between NDRG2 expression and clinicopathological factors were determined by immunohistochemical analysis of tumor tissues from 86 GBC patients. Biological functions of NDRG2 and NDRG2-mediated signaling pathways were determined in GBC cell lines with NDRG2 knockdown or overexpression. RESULTS Loss of NDRG2 expression was an independent predictor of decreased survival and was significantly associated with a more advanced T stage, higher cellular grade, and lymphatic invasion in patients with GBC. GBC cells with loss of NDRG2 expression showed significantly enhanced proliferation, migration, and invasiveness in vitro, and tumor growth and metastasis in vivo. Loss of NDRG2 induced the expression of matrix metalloproteinase-19 (MMP-19), which regulated the expression of Slug at the transcriptional level. In addition, MMP-19-induced Slug, increased the expression of a receptor tyrosine kinase, Axl, which maintained Slug expression through a positive feedback loop, and stabilized epithelial-mesenchymal transition of GBC cells. CONCLUSIONS The results of our study help to explain why the loss of NDRG2 expression is closely correlated with malignancy of GBC. These results strongly suggest that NDRG2 could be a favorable prognostic indicator and promising target for therapeutic agents against GBC.
Collapse
Affiliation(s)
- Dong Gwang Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Sang-Hyun Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jang-Seong Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jongjin Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Young-Lai Cho
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Koon Soon Kim
- Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Deog Yeon Jo
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nayoung Kim
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young-Jun Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Neuromarker Resource Bank, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Hyo Jin Lee
- Department of Internal Medicine and Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Eisa NH, ElSherbiny NM, Shebl AM, Eissa LA, El-Shishtawy MM. Phenethyl isothiocyanate potentiates anti-tumour effect of doxorubicin through Akt-dependent pathway. Cell Biochem Funct 2015; 33:541-51. [DOI: 10.1002/cbf.3153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Nada H. Eisa
- Department of Biochemistry, Faculty of Pharmacy; Mansoura University; Mansoura 35516 Egypt
| | - Nehal M. ElSherbiny
- Department of Biochemistry, Faculty of Pharmacy; Mansoura University; Mansoura 35516 Egypt
| | - Abdelhadi M. Shebl
- Department of Pathology, Faculty of Medicine; Mansoura University; Mansoura 35516 Egypt
| | - Laila A. Eissa
- Department of Biochemistry, Faculty of Pharmacy; Mansoura University; Mansoura 35516 Egypt
| | | |
Collapse
|
36
|
Kang K, Nam S, Kim B, Lim JH, Yang Y, Lee MS, Lim JS. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes. Biochem Biophys Res Commun 2015; 468:611-6. [PMID: 26546825 DOI: 10.1016/j.bbrc.2015.10.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022]
Abstract
N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34(+) progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppresses the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis.
Collapse
Affiliation(s)
- Kyeongah Kang
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sorim Nam
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Bomi Kim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ji Hyun Lim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
37
|
Ichikawa T, Nakahata S, Fujii M, Iha H, Morishita K. Loss of NDRG2 enhanced activation of the NF-κB pathway by PTEN and NIK phosphorylation for ATL and other cancer development. Sci Rep 2015; 5:12841. [PMID: 26269411 PMCID: PMC4534796 DOI: 10.1038/srep12841] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
The activation of nuclear factor kappa B (NF-κB) signaling has a central role in the development of adult T-cell leukemia/lymphoma (ATL) and many other cancers. However, the activation mechanism of the NF-κB pathways remains poorly understood. Recently, we reported that N-myc downstream-regulated gene 2 (NDRG2) is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway by promoting the active dephosphorylated form of PTEN at its C-terminus via the recruitment of PP2A. Additionally, the down-regulation of NDRG2 expression promotes the inactive phosphorylated form of PTEN, which results in constitutively active PI3K/AKT signaling in various cancer cell types. Here, we investigated the involvement of NDRG2 in modulating NF-κB signaling. The forced expression of NDRG2 in ATL cells down-regulates not only the canonical pathway by inhibiting AKT signaling but also the non-canonical pathway by inducing NF-κB-inducing kinase (NIK) dephosphorylation via the recruitment of PP2A. Therefore, NDRG2 works as a PP2A recruiter to suppress not only PI3K/AKT signaling but also NF-κB signaling, which is particularly important in host defenses or immune responses to Human T-cell leukemia virus type 1 (HTLV-1) infection. Furthermore, the loss of NDRG2 expression might play an important role in the progression of tumor development after HTLV-1 infection.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Masahiro Fujii
- Division of Virology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
38
|
Kim YJ, Bae J, Shin TH, Kang SH, Jeong M, Han Y, Park JH, Kim SK, Kim YS. Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis. J Control Release 2015; 216:56-68. [PMID: 26260451 DOI: 10.1016/j.jconrel.2015.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/14/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP1) receptor, involved in vascular endothelial growth factor (VEGF)-mediated vascular permeability and tumor angiogenesis, is targeted by peptides that bind to its VEGF-binding site. However, these peptides also cross-react with the structurally related receptor, NRP2. Here, we describe an immunoglobulin Fc-fused peptide, Fc-TPP11, which specifically binds to the VEGF-binding site of NRP1 with approximately 2nM affinity, but negligibly to that of NRP2. Fc-TPP11 triggered NRP1-dependent signaling, enhanced vascular permeability via vascular endothelial (VE)-cadherin downregulation, and increased paracellular permeability via E-cadherin downregulation in tumor tissues. Fc-TPP11 also significantly enhanced the tumor penetration of co-injected anti-cancer drug, doxorubicin, leading to the improved in vivo anti-tumor efficacy. Fc-TPP11 was easily adapted to the full-length anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) cetuximab (Erbitux), cetuximab-TPP11, exhibiting more than 2-fold improved tumor penetration than the parent cetuximab. Fc-TPP11 exhibited a similar whole-body half-life to that of intact Fc in tumor bearing mice. In addition to the tumor-penetrating activity, Fc-TPP11 suppressed VEGF-dependent angiogenesis by blocking VEGF binding to NRP1, thereby inhibiting tumor growth without promoting metastasis in the mouse model. Our results show that NRP1-specific, high-affinity binding of Fc-TPP11, is useful to validate NRP1 signaling, independent of NRP2. Thus, Fc-TPP11 can be used as a tumor penetration-promoting agent with anti-angiogenic activity or directly adapted to mAb-TPP11 format for more potent anti-cancer antibody therapy.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Jeomil Bae
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Tae-Hwan Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Se Hun Kang
- Molecular Imaging & Therapy Branch, National Cancer Center, Goyang 410-769, Republic of Korea
| | - Moonkyoung Jeong
- Department of Bio and Brain Engineering & Center of Optics for Health Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yunho Han
- Department of Bio and Brain Engineering & Center of Optics for Health Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering & Center of Optics for Health Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seok-Ki Kim
- Molecular Imaging & Therapy Branch, National Cancer Center, Goyang 410-769, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
39
|
Ichikawa T, Nakahata S, Tamura T, Manachai N, Morishita K. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β. Cell Signal 2015. [PMID: 26208882 DOI: 10.1016/j.cellsig.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomohiro Tamura
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Nawin Manachai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
40
|
Wang J, Yin D, Xie C, Zheng T, Liang Y, Hong X, Lu Z, Song X, Song R, Yang H, Sun B, Bhatta N, Meng X, Pan S, Jiang H, Liu L. The iron chelator Dp44mT inhibits hepatocellular carcinoma metastasis via N-Myc downstream-regulated gene 2 (NDRG2)/gp130/STAT3 pathway. Oncotarget 2015; 5:8478-91. [PMID: 25261367 PMCID: PMC4226698 DOI: 10.18632/oncotarget.2328] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here we showed that hepatocellular carcinoma (HCC) cell lines with high metastatic potential had low levels of NDRG2. The iron chelator Dp44mT up-regulated NDRG2, suppressed epithelial-mesenchymal transition (EMT) and inhibited tumor metastasis in HCC having high metastatic potential. Also Dp44mT attenuated the TGF-β1-induced EMT in HCC having low metastatic potential. In agreement, silencing endogenous NDRG2 with shNDRG2 in HCC cells attenuated the effect of Dp44mT. We showed that the NDRG2/gp130/STAT3 pathway can mediate Dp44mT effects. In agreement, we found that a combination of NDRG2 expression and p-STAT3 levels is a strong predictor of prognosis in HCC patients. We suggest that up-regulation of NDRG2 by Dp44mT is a promising therapeutic approach in HCC.
Collapse
Affiliation(s)
- Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China. These authors contributed equally to this work
| | - Dalong Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China. These authors contributed equally to this work
| | - Changming Xie
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China. These authors contributed equally to this work
| | - Tongsen Zheng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China. These authors contributed equally to this work
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xuehui Hong
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Haiyan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Boshi Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Nishant Bhatta
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xianzhi Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shangha Pan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Kim A, Im M, Yim NH, Hwang YH, Yang HJ, Ma JY. The novel herbal cocktail MA128 suppresses tumor growth and the metastatic potential of highly malignant tumor cells. Oncol Rep 2015; 34:900-12. [PMID: 26035620 DOI: 10.3892/or.2015.4018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
MA128, a novel herbal medicine, was previously identified and its effectiveness in the treatment of asthma and atopic dermatitis (AD) was demonstrated. In particular, post-inflammatory hyperpigmentation (PIH) in AD mice was improved by treatment with MA128. In addition, MA128 exhibited anti-melanogenic activity by inhibiting tyrosinase activity via the p38 MAPK and protein kinase A signaling pathways in B16F10 cells. In the present study, we examined whether oral administration of MA128 suppressed the in vivo tumor growth of HT1080 cells in athymic nude mice. The results showed that the daily oral administration of 75 and 150 mg/kg MA128 suppressed the tumorigenic growth of HT1080 cells efficiently. Since metastasis is a major cause of cancer-associated mortality and the greatest challenge during cancer treatment, we investigated the effect of non-toxic concentrations of MA128 on the metastatic potential of HT1080 cells. MA128 inhibited anchorage-independent colony formation, migration and invasion. Matrix metalloproteinase-9 (MMP-9) activity under resting and PMA-stimulated conditions was decreased in a dose-dependent manner by MA128 in HT1080 cells. In addition, the daily oral administration of MA128 at doses of 75 and 150 mg/kg efficiently blocked the lung metastasis of B16F10 cells that had been injected into the tail veins of C57BL/6 mice. In particular, none of the mice treated with MA128 exhibited systemic toxicity, such as body weight loss or liver and kidney dysfunction. MA128 also inhibited tumor‑induced angiogenesis. Taken together, the results suggest that MA128 is a potential therapeutic agent and a safe herbal medicine for controlling malignant and metastatic cancer.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Minju Im
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Nam-Hiu Yim
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Youn-Hwan Hwang
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Hye Jin Yang
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| |
Collapse
|
42
|
Zhang J, Liu C, Hou R. Knockdown of HMGB1 improves apoptosis and suppresses proliferation and invasion of glioma cells. Chin J Cancer Res 2014; 26:658-68. [PMID: 25561763 PMCID: PMC4279198 DOI: 10.3978/j.issn.1000-9604.2014.12.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/30/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The purposes of this study were to explore the effects of high mobility group protein box 1 (HMGB1) gene on the growth, proliferation, apoptosis, invasion, and metastasis of glioma cells, with an attempt to provide potential therapeutic targets for the treatment of glioma. METHODS The expressions of HMGB1 in glioma cells (U251, U-87MG and LN-18) and one control cell line (SVG p12) were detected by real time PCR and Western blotting, respectively. Then, the effects of HMGB1 on the biological behaviors of glioma cells were detected: the expression of HMGB1 in human glioma cell lines U251 and U-87MG were suppressed using RNAi technique, then the influences of HMGB1 on the viability, cycle, apoptosis, and invasion abilities of U251 and U-87MG cells were analyzed using in a Transwell invasion chamber. Also, the effects of HMGB1 on the expressions of cyclin D1, Bax, Bcl-2, and MMP 9 were detected. RESULTS As shown by real-time PCR and Western blotting, the expression of HMGB1 significantly increased in glioma cells (U251, U-87MG, and LN-18) in comparison with the control cell line (SVG p12); the vitality, proliferation and invasive capabilities of U251 and U-87MG cells in the HMGB1 siRNA-transfected group were significantly lower than those in the blank control group and negative control (NC) siRNA group (P<0.05) but showed no significant difference between the blank control group and NC siRNA group. The percentage of apoptotic U251 and U-87MG cells was significantly higher in the HMGB1 siRNA-transfected group than in the blank control group and NC siRNA group (P<0.05) but was similar between the latter two groups. The HMGB1 siRNA-transfected group had significantly lower expression levels of Cyclin D1, Bcl-2, and MMP-9 protein in U251 and U-87MG cells and significantly higher expression of Bax protein than in the blank control group and NC siRNA group (P<0.05); the expression profiles of cyclin D1, Bax, Bcl-2, and MMP 9 showed no significant change in both blank control group and NC siRNA group. CONCLUSIONS HMGB1 gene may promote the proliferation and migration of glioma cells and suppress its effects of apoptosis. Inhibition of the expression of HMGB1 gene can suppress the proliferation and migration of glioma cells and promote their apoptosis. Our observations provided a new target for intervention and treatment of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruiguang Hou
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
43
|
Reduction of metastatic and angiogenic potency of malignant cancer by Eupatorium fortunei via suppression of MMP-9 activity and VEGF production. Sci Rep 2014; 4:6994. [PMID: 25385232 PMCID: PMC4227014 DOI: 10.1038/srep06994] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Eupatorium fortunei has long been used to treat nausea and poor appetite, and has been prescribed as a diuretic and detoxifying drug in Chinese medicine. Recent studies have demonstrated that E. fortunei possesses anti-bacterial, anti-oxidant, and anti-diabetic activities, as well as cytotoxicity to human leukemia cells. However, at non-toxic concentrations, the effects of an aqueous extract of E. fortunei (WEF) on the metastatic and angiogenic potential of malignant tumor cells have not been reported. In this study, we found that WEF suppressed the metastatic properties, including anchorage-independent colony formation, migration, and invasion, by downregulating the proteolytic activity of MMP-9. NF-κB activation and the phosphorylation of p38 and JNK were reduced significantly by WEF. Additionally, WEF inhibited tumor-induced angiogenesis markedly, affecting HUVEC migration, tube formation by HUVECs, and microvessel sprouting from rat aortic rings via a reduction in VEGF in tumors. In a pulmonary metastasis model, daily administration of WEF at 50 mg/kg markedly decreased metastatic colonies of intravenously injected B16F10 cells on the lung surface in C57BL/6J mice. Further, none of the WEF-administered mice exhibited systemic toxicity. Taken together, our results indicate that WEF is a potential therapeutic herbal product that may be useful for controlling malignant metastatic cancer.
Collapse
|
44
|
Chen YJ, Chang LS. Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol 2014; 92:530-43. [PMID: 25316568 DOI: 10.1016/j.bcp.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to explore the signaling pathways associated with the effect of simvastatin on matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia K562 cells. In sharp contrast to its insignificant effect on MMP-2, simvastatin down-regulated MMP-9 protein expression and mRNA levels in K562 cells. Simvastatin-induced Pin1 down-regulation evoked NFκB/p65 degradation. Meanwhile, simvastatin induced JNK-mediated c-Jun and ATF-2 activation. Over-expression of Pin1 suppressed simvastatin-induced MMP-9 down-regulation. Treatment with SP600125 (a JNK inhibitor) or knock-down of JNK1 reduced MMP-2 expression in simvastatin-treated cells. Simvastatin enhanced the binding of c-Jun/ATF-2 with the MMP-2 promoter. Down-regulation of c-Jun or ATF-2 by siRNA revealed that c-Jun/ATF-2 activation was crucial for MMP-2 expression. Suppression of p65 activation or knock-down of Pin1 by shRNA reduced MMP-2 and MMP-9 expression in K562 cells. Over-expression of constitutively active JNK1 rescued MMP-2 expression in Pin1 shRNA-transfected cells. Simvastatin treatment also suppressed MMP-9 but not MMP-2 expression in human leukemia U937 and KU812 cells. Taken together, our data indicate that simvastatin-induced p65 instability leads to MMP-9 down-regulation in leukemia cells, while simvastatin-induced JNK1/c-Jun/ATF-2 activation maintains the MMP-2 expression underlying p65 down-regulation.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
45
|
Kim MJ, Lim J, Yang Y, Lee MS, Lim JS. N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling. Cancer Lett 2014; 354:33-42. [PMID: 25153349 DOI: 10.1016/j.canlet.2014.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/17/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Although NDRG2 has recently been found to be a candidate tumor suppressor, its precise role in the epithelial-mesenchymal transition (EMT) is not well understood. In the present study, we demonstrated that NDRG2 overexpression in MDA-MB-231 cells down-regulated the expression of Snail, a transcriptional repressor of E-cadherin and a key regulator of EMT, as well as the phosphorylation of signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor that is activated in many human malignancies including breast cancer. In addition, we confirmed that the expression of Snail and phospho-STAT3 was recovered when NDRG2 was knocked down by siRNA in MCF7 cells in which NDRG2 is endogenously expressed. Interestingly, MDA-MB-231-NDRG2 cells showed remarkably decreased Snail expression after treatment with JSI-124 (also known as cucurbitacin I) or Stattic, STAT3 inhibitors, compared to MDA-MB-231-mock cells. Moreover, STAT3 activation by EGF treatment induced higher Snail expression, and NDRG2 overexpression resulted in the inhibition of Snail expression in MDA-MB-231 cells stimulated by EGF in the absence or presence of STAT3 inhibitor. Treatment of MDA-MB-231 cells with STAT3 inhibitor led to a moderate decrease in wound healing and migration capacity, whereas STAT3 inhibitor treatment of MDA-MB-231-NDRG2 cells resulted in a significant attenuation of migration in both resting and EGF-stimulated cells. Collectively, our data demonstrate that the inhibition of STAT3 signaling by NDRG2 suppresses EMT progression of EMT via the down-regulation of Snail expression.
Collapse
Affiliation(s)
- Myung-Jin Kim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
46
|
Kim A, Im M, Ma JY. Anisi stellati fructus extract attenuates the in vitro and in vivo metastatic and angiogenic potential of malignant cancer cells by downregulating proteolytic activity and pro-angiogenic factors. Int J Oncol 2014; 45:1937-48. [PMID: 25176510 DOI: 10.3892/ijo.2014.2606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022] Open
Abstract
Anisi stellati fructus (ASF), commonly known as star anise, has long been used as a traditional Chinese medicine to treat inflammation, nervousness, insomnia and pain. In recent studies, it has been demonstrated that ASF possesses anti-bacterial, anti-fungal and anti-oxidant activities, as well as exhibits inhibitory effects on capillary‑like tube formation in human umbilical vein endothelial cells (HUVECs). However, the effects of ASF extract on the metastatic potential of malignant tumor cells have not been examined. In this study, we found that daily oral administration of ASF (50 mg/kg) remarkably reduced the number of pulmonary metastatic colonies of B16F10 cells in C57BL/6J mice with no observed systemic toxicity. In an in vitro system, ASF inhibited metastatic properties, including anchorage‑independent colony formation, migration and invasion. Upon phorbol 12-myristate 13-acetate (PMA) stimulation, the mRNA levels of matrix metalloproteinases (MMPs) -9, -13, -14 and urokinase plasminogen activator (uPA) decreased in a dose-dependent manner with ASF treatment. Gelatinase, type I collagenase, and uPA activities were also suppressed efficiently by ASF treatment. In response to PMA, NF-κB and AP-1 activation as well as p38 phosphorylation, which are crucial for MMP activation, were significantly decreased by ASF. In particular, ASF considerably inhibited tumor-induced HUVEC migration and tube formation and suppressed in vivo tumor-induced angiogenesis via a reduction of pro-angiogenic factors in tumors. These results collectively indicate that ASF might be useful in the management of metastatic malignant tumors.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM)-Based Herbal Drug Development Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Minju Im
- Korean Medicine (KM)-Based Herbal Drug Development Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Based Herbal Drug Development Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| |
Collapse
|
47
|
Kim HS, Kim MJ, Lim J, Yang Y, Lee MS, Lim JS. NDRG2 overexpression enhances glucose deprivation-mediated apoptosis in breast cancer cells via inhibition of the LKB1-AMPK pathway. Genes Cancer 2014; 5:175-85. [PMID: 25061501 PMCID: PMC4104758 DOI: 10.18632/genesandcancer.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023] Open
Abstract
The newly identified tumor suppressor, N-myc downstream-regulated gene 2 (NDRG2), has been studied in various cancers because of its anticancer and antimetastasis effects. In this study, we examined the effect of NDRG2 expression on cell viability in MDA-MB-231 human breast cancer cells under conditions that are similar to the microenvironment of solid tumors, which include glucose deprivation. NDRG2 overexpression enhanced the pro-apoptotic effects of glucose deprivation. Glucose deprivation also induced the activation of AMP-activated protein kinase (AMPK), which plays a role in protecting tumor cells from metabolic stresses. NDRG2 overexpression strongly reduced glucose deprivation-induced AMPK phosphorylation and increased the cleavage of poly (ADP-ribose) polymerase (PARP), which indicated the induction of apoptosis. The expression of a constitutively active form of AMPK effectively blocked glucose deprivation-induced apoptosis in NDRG2-overexpressing MDA-MB-231 cells. Moreover, NDRG2 overexpression also enhanced the pro-apoptotic effects of 2-deoxyglucose (2-DG) or hypoxia, an inducer of metabolic stresses. Finally, we showed that LKB1 is an upstream kinase of AMPK that is involved in the inhibition of glucose deprivation-induced AMPK activity in NDRG2-overexpressing cells. Our findings collectively suggest that NDRG2 is a negative regulator of AMPK activity and functions as a sensitizer of glucose deprivation.
Collapse
Affiliation(s)
- Hak-Su Kim
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| | - Myung-Jin Kim
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jihyun Lim
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Yang
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences and the Research Center for Women's Diseases, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Cao W, Zhang JL, Feng DY, Liu XW, Li Y, Wang LF, Yao LB, Zhang H, Zhang J. The effect of adenovirus-conjugated NDRG2 on p53-mediated apoptosis of hepatocarcinoma cells through attenuation of nucleotide excision repair capacity. Biomaterials 2014; 35:993-1003. [PMID: 24383128 DOI: 10.1016/j.biomaterials.2013.09.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
NDRG2 mRNA and protein levels can be upregulated in a p53-dependent manner. NDRG2 enhances p53-mediated apoptosis, whereas overexpression of NDRG2 suppresses tumor cell growth, regardless of whether p53 is mutated. However, the complicated mechanism by which NDRG2 suppresses tumor cell growth and enhances apoptosis mediated by p53 is not fully understood. Here, we demonstrated that Ad-NDRG2 enhanced the apoptosis of HepG2 cells (wild-type p53). Additionally, Ad-NDRG2 combined with rAd-p53 enhanced the apoptosis of Huh7 cells (mutant p53) after chemotherapy, and the expression of the ERCC6 gene (Cockayne syndrome group B protein gene) was suppressed in this process. Ad-NDRG2 combined with rAd-p53 induced the apoptosis of tumor cells (HepG2 and Huh7 cells); however, apoptosis was attenuated after transfection with ERCC6. Our results indicate that Ad-NDRG2 enhances the p53-mediated apoptosis of hepatocarcinoma cells (HepG2 and Huh7) by attenuating the nucleotide excision repair capacity (i.e., by downregulating ERCC6), and ERCC6 is a NDRG2-inducible target gene that is involved in the p53-mediated apoptosis pathway.
Collapse
|
49
|
Takarada-Iemata M, Kezuka D, Takeichi T, Ikawa M, Hattori T, Kitao Y, Hori O. Deletion of N-myc downstream-regulated gene 2 attenuates reactive astrogliosis and inflammatory response in a mouse model of cortical stab injury. J Neurochem 2014; 130:374-87. [PMID: 24697507 DOI: 10.1111/jnc.12729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 02/02/2023]
Abstract
N-myc downstream-regulated gene 2 (Ndrg2) is a differentiation- and stress-associated molecule predominantly expressed in astrocytes in the CNS. In this study, we examined the expression and the role of Ndrg2 after cortical stab injury. We observed that Ndrg2 expression was elevated in astrocytes surrounding the wounded area as early as day 1 after injury in wild-type mice. Deletion of Ndrg2 resulted in lower induction of reactive astroglial and microglial markers in the injured cortex. Histological analysis showed reduced levels of hypertrophic changes in astrocytes, accumulation of microglia, and neuronal death in Ndrg2(-/-) mice after injury. Furthermore, activation of the IL-6/signal transducer and activator of transcription 3 (STAT3) pathway, including the expression of IL-6 family cytokines and phosphorylation of STAT3, was markedly reduced in Ndrg2(-/-) mice after injury. In a culture system, both of Il6 and Gfap were up-regulated in wild-type astrocytes treated with forskolin. Deletion of Ndrg2 attenuated induction of these genes, but did not alter proliferation or migration of astrocytes. Adenovirus-mediated reexpression of Ndrg2 rescued the reduction of IL-6 expression after forskolin stimulation. These findings suggest that Ndrg2 plays a key role in reactive astrogliosis after cortical stab injury through a mechanism involving the positive regulation of IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan; Japan Science and Technology Agency, CREST, Kawaguchi, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, Manachai N, Yamakawa N, Hamasaki M, Kitabayashi I, Arai Y, Kanai Y, Taki T, Abe T, Kiyonari H, Shimoda K, Ohshima K, Horii A, Shima H, Taniwaki M, Yamaguchi R, Morishita K. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun 2014; 5:3393. [PMID: 24569712 PMCID: PMC3948061 DOI: 10.1038/ncomms4393] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
Constitutive phosphatidylinositol 3-kinase (PI3K)-AKT activation has a causal role in adult T-cell leukaemia-lymphoma (ATLL) and other cancers. ATLL cells do not harbour genetic alterations in PTEN and PI3KCA but express high levels of PTEN that is highly phosphorylated at its C-terminal tail. Here we report a mechanism for the N-myc downstream-regulated gene 2 (NDRG2)-dependent regulation of PTEN phosphatase activity via the dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 cluster within the C-terminal tail. We show that NDRG2 is a PTEN-binding protein that recruits protein phosphatase 2A (PP2A) to PTEN. The expression of NDRG2 is frequently downregulated in ATLL, resulting in enhanced phosphorylation of PTEN at the Ser380/Thr382/Thr383 cluster and enhanced activation of the PI3K-AKT pathway. Given the high incidence of T-cell lymphoma and other cancers in NDRG2-deficient mice, PI3K-AKT activation via enhanced PTEN phosphorylation may be critical for the development of cancer.
Collapse
Affiliation(s)
- Shingo Nakahata
- 1] Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan [2]
| | - Tomonaga Ichikawa
- 1] Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan [2]
| | - Phudit Maneesaay
- Department of Veterinary Pathology, University of Miyazaki, Nishi 1-1, Gakuen Kibana Dai, Miyazaki 889-2192, Japan
| | - Yusuke Saito
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kentaro Nagai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomohiro Tamura
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Nawin Manachai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Norio Yamakawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Hamasaki
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, 67 Asahimati, Kurume 830-0011, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293, Japan
| | - Masafumi Taniwaki
- Department of Molecular Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, University of Miyazaki, Nishi 1-1, Gakuen Kibana Dai, Miyazaki 889-2192, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|