1
|
Zuo T, Yang J, Sun Y, Li X, Wu H, Han K, Zhao L, Peng W. A U-shaped association between composite dietary antioxidant index and migraine in US adults: a nationwide cross-sectional study. Nutr Neurosci 2024:1-11. [PMID: 39498766 DOI: 10.1080/1028415x.2024.2423574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
BACKGROUND The field of dietary therapies for migraine has grown in popularity. Less research has been conducted to establish the relationship between migraine and the composite dietary antioxidant index (CDAI), a crucial indicator for evaluating the overall combined effects of multiple dietary antioxidants. Therefore, this study addressed this gap based on the National Health and Nutrition Examination Survey (NHANES) database. METHODS Multivariate logistic regression equations were used to investigate the relationship between CDAI and migraine, and smoothed-fitted curves were plotted. After a nonlinear relationship was discovered, the recursive algorithm and a two-stage linear regression model were employed to calculate the turning point. Additional stratified analyses were performed to explore differences between populations. RESULTS This study included a total of 9,190 participants aged 20 years old or older. A U-shaped association was observed between the CDAI and migraine, with an inflection point of 0.2. They were negatively correlated before the inflection point with OR of 0.93 (95% CI = 0.88-0.97) and positively correlated after the inflection point with OR of 1.04 (95% CI = 1.01-1.07). This U-shaped relationship persisted among people aged <60 and ≥60 years, women, and people with BMI <30 and ≥30. CONCLUSIONS We identified a U-shaped association between CDAI and migraine in the U.S. adult population. Further case-control studies and experimental research are needed to explore the underlying mechanisms of action.
Collapse
Affiliation(s)
- Tianqi Zuo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jingya Yang
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yiyan Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaotong Li
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Kunqi Han
- Department of Neurology, Rizhao City Hospital of Traditional Chinese Medicine, Rizhao, People's Republic of China
| | - Leiyong Zhao
- Department of Psychiatry, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Peng
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
2
|
Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022; 13:924817. [PMID: 35754474 PMCID: PMC9218606 DOI: 10.3389/fphar.2022.924817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator kelch-like ECH-associated protein 1 (KEAP1) regulate various genes involved in redox homeostasis, which protects cells from stress conditions such as reactive oxygen species and therefore exerts beneficial effects on suppression of carcinogenesis. In addition to their pivotal role in cellular physiology, accumulating innovative studies indicated that NRF2/KEAP1-governed pathways may conversely be oncogenic and cause therapy resistance, which was profoundly modulated by epigenetic mechanism. Therefore, targeting epigenetic regulation in NRF2/KEAP1 signaling is a potential strategy for cancer treatment. In this paper, the current knowledge on the role of NRF2/KEAP1 signaling in cancer oxidative stress is presented, with a focus on how epigenetic modifications might influence cancer initiation and progression. Furthermore, the prospect that epigenetic changes may be used as therapeutic targets for tumor treatment is also investigated.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sining Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlin Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cadeau C, Farvid MS, Rosner BA, Willett WC, Eliassen AH. Dietary and Supplemental Vitamin C Intake and Risk of Breast Cancer: Results from the Nurses' Health Studies. J Nutr 2022; 152:835-843. [PMID: 34865068 PMCID: PMC8891173 DOI: 10.1093/jn/nxab407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Some previous studies suggested that high supplemental vitamin C intake may be associated with an increased risk of breast cancer, although evidence is inconsistent. OBJECTIVES Our objective was to study the association between vitamin C intake and breast cancer risks using regularly updated assessments of intake over a long follow-up. METHODS We prospectively followed 88,041 women aged 33 to 60 years from the Nurses' Health Study (1980-2014) and 93,372 women aged 26 to 45 years from the Nurses' Health Study II (1991-2013). A total of 11,258 incident invasive breast cancers among 181,413 women were diagnosed. Data on vitamin C intake were collected every 2-4 years via a validated FFQ and specific questions on dietary supplement use. Multivariate HRs and 95% CIs for incident invasive breast cancer were estimated with Cox models. RESULTS During follow-up, 82% of participants ever used supplements containing vitamin C, including multivitamins. Cumulative total vitamin C intake (HR for quintiles 5 compared with 1 = 0.97; 95% CI: 0.91-1.03; Ptrend = 0.81), dietary vitamin C intake (HR for quintiles 5 compared with 1 = 0.98; 95% CI: 0.92-1.04; Ptrend = 0.57), and supplemental vitamin C intake (HR for quintiles 5 compared with 1 in users = 1.02; 95% CI: 0.94-1.09; Ptrend = 0.77) were not associated with breast cancer risks. Results were unchanged when different exposure latencies were considered. The results did not differ by menopausal status, postmenopausal hormone therapy use, or BMI. No differences were observed by estrogen receptor status of the tumor. CONCLUSIONS Our results do not support any important association between total, dietary, or supplemental vitamin C intake and breast cancer risks.
Collapse
Affiliation(s)
- Claire Cadeau
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maryam S Farvid
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Li Y, Cui J, Jia J. The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review. Curr Cancer Drug Targets 2021; 21:21-54. [PMID: 33023449 DOI: 10.2174/1568009620666201006143419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
CYP1A1 and CYP1B1 are extrahepatic P450 family members involved in the metabolism of procarcinogens, such as PAHs, heterocyclic amines and halogen-containing organic compounds. CYP1A1/1B1 also participate in the metabolism of endogenous 17-β-estradiol, producing estradiol hydroquinones, which are the intermediates of carcinogenic semiquinones and quinones. CYP1A1 and CYP1B1 proteins share approximately half amino acid sequence identity but differ in crystal structures. As a result, CYP1A1 and CYP1B1 have different substrate specificity to chemical procarcinogens. This review will introduce the general molecular biology knowledge of CYP1A1/1B1 and the metabolic processes of procarcinogens regulated by these two enzymes. Over the last four decades, a variety of natural products and synthetic compounds which interact with CYP1A1/1B1 have been identified as effective chemo-preventive agents against chemical carcinogenesis. These compounds are mainly classified as indirect or direct CYP1A1/1B1 inhibitors based on their distinct mechanisms. Indirect CYP1A1/1B1 inhibitors generally impede the transcription and translation of CYP1A1/1B1 genes or interfere with the translocation of aryl hydrocarbon receptor (AHR) from the cytosolic domain to the nucleus. On the other hand, direct inhibitors inhibit the catalytic activities of CYP1A1/1B1. Based on the structural features, the indirect inhibitors can be categorized into the following groups: flavonoids, alkaloids and synthetic aromatics, whereas the direct inhibitors can be categorized into flavonoids, coumarins, stilbenes, sulfur containing isothiocyanates and synthetic aromatics. This review will summarize the in vitro and in vivo activities of these chemo-preventive agents, their working mechanisms, and related SARs. This will provide a better understanding of the molecular mechanism of CYP1 mediated carcinogenesis and will also give great implications for the discovery of novel chemo-preventive agents in the near future.
Collapse
Affiliation(s)
- Yubei Li
- China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Rhon Calderón EA, Galarza RA, Faletti AG. 3-Methylcholanthrene impacts on the female germ cells of rats without causing systemic toxicity. Toxicology 2020; 429:152328. [DOI: 10.1016/j.tox.2019.152328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
|
6
|
Pemp D, Esch HL, Hauptstein R, Möller FJ, Zierau O, Bosland MC, Geppert LN, Kleider C, Schlereth K, Vollmer G, Lehmann L. Novel insight in estrogen homeostasis and bioactivity in the ACI rat model of estrogen-induced mammary gland carcinogenesis. Arch Toxicol 2019; 93:1979-1992. [PMID: 31119341 DOI: 10.1007/s00204-019-02483-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Despite being widely used to investigate 17β-estradiol (E2)-induced mammary gland (MG) carcinogenesis and prevention thereof, estrogen homeostasis and its significance in the female August Copenhagen Irish (ACI) rat model is unknown. Thus, levels of 12 estrogens including metabolites and conjugates were determined mass spectrometrically in 38 plasmas and 52 tissues exhibiting phenotypes ranging from normal to palpable tumor derived from a representative ACI study using two different diets. In tissues, 40 transcripts encoding proteins involved in estrogen (biotrans)formation, ESR1-mediated signaling, proliferation and oxidative stress were analyzed (TaqMan PCR). Influence of histo(patho)logic phenotypes and diet on estrogen and transcript levels was analyzed by 2-way ANOVA and explanatory variables influencing levels and bioactivity of estrogens in tissues were identified by multiple linear regression models. Estrogen profiles in tissue and plasma and the influence of Hsd17b1 levels on intra-tissue levels of E2 and E1 conclusively indicated intra-mammary formation of E2 in ACI tumors by HSD17B1-mediated conversion of E1. Proliferation in ACI tumors was influenced by Egfr, Igf1r, Hgf and Met levels. 2-MeO-E1, the only oxidative estrogen metabolite detected above 28-42 fmol/g, was predominately observed in hyperplastic tissues and intra-tissue conversion of E1 seemed to contribute to its levels. The association of the occurrence of 2-MeO-E1 with higher levels of oxidative stress observed in hyperplastic and tumor tissues remained equivocal. Thus, the present study provides mechanistic explanation for previous and future results observed in the ACI model.
Collapse
Affiliation(s)
- Daniela Pemp
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Harald L Esch
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - René Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank J Möller
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Oliver Zierau
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL, 60612, USA
| | - Leo N Geppert
- Chair of Mathematical Statistics with Applications in Biometrics, TU Dortmund University, Vogelpothsweg 87, 44221, Dortmund, Germany
| | - Carolin Kleider
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katharina Schlereth
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Günter Vollmer
- Chair of Molecular Cell Physiology and Endocrinology, University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Hanikoglu A, Kucuksayan E, Hanikoglu F, Ozben T, Menounou G, Sansone A, Chatgilialoglu C, Di Bella G, Ferreri C. Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes. Anticancer Agents Med Chem 2019; 19:1899-1909. [DOI: 10.2174/1871520619666190930130732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Background:Vitamin C (Vit C) is an important physiological antioxidant with growing applications in cancer. Somatostatin (SST) is a natural peptide with growth inhibitory effect in several mammary cancer models.Objective:The combined effects of SST and Vit C supplementation have never been studied in breast cancer cells so far.Methods:We used MCF-7 and MDA-MB231 breast cancer cells incubated with SST for 24h, in the absence and presence of Vit C, at their EC50 concentrations, to evaluate membrane fatty acid-profiles together with the follow-up of EGFR and MAPK signaling pathways.Results:The two cell lines gave different membrane reorganization: in MCF-7 cells, decrease of omega-6 linoleic acid and increase of omega-3 fatty acids (Fas) occurred after SST and SST+Vit C incubations, the latter also showing significant increases in MUFA, docosapentaenoic acid and mono-trans arachidonic acid levels. In MDA-MB231 cells, SST+Vit C incubation induced significant membrane remodeling with an increase of stearic acid and mono-trans-linoleic acid isomer, diminution of omega-6 linoleic, arachidonic acid and omega-3 (docosapentaenoic and docosadienoic acids). Distinct signaling pathways in these cell lines were studies: in MCF-7 cells, incubations with SST and Vit C, alone or in combination significantly decreased EGFR and MAPK signaling, whereas in MDA-MB231 cells, SST and Vit C incubations, alone or combined, decreased p-P44/42 MAPK levels, and increased EGFR levels.Conclusion:Our results showed that SST and Vit C can be combined to induce membrane fatty acid changes, including lipid isomerization through a specific free radical-driven process, influencing signaling pathways.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Ertan Kucuksayan
- Department of Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ferhat Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Georgia Menounou
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chrys Chatgilialoglu
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
8
|
Alpha-naphthoflavone induces apoptosis through endoplasmic reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells. Neurotoxicology 2018; 71:39-51. [PMID: 30508555 DOI: 10.1016/j.neuro.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023]
Abstract
α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.
Collapse
|
9
|
Park SA. Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.15616/bsl.2018.24.3.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
10
|
Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget 2018; 8:164-178. [PMID: 27438141 PMCID: PMC5352084 DOI: 10.18632/oncotarget.10516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Estrogen (17β-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene in MCF-10A cells suppressed 4-OHE2-induced cell proliferation and transformation. In addition, subcutaneous administration of 4-OHE2 markedly enhanced the growth of the MDA-MB-231 human breast cancer xenografts, which was retarded by zinc protoporphyrin, a pharmacological inhibitor of HO-1. 4-OHE2-induced HO-1 expression was mediated by NF-E2-related factor 2 (Nrf2). We speculate that an electrophilic quinone formed as a consequence of oxidation of 4-OHE2 binds directly to Kelch-like ECH-associated protein 1 (Keap1), an inhibitory protein that sequesters Nrf2 in the cytoplasm. This will diminish association between Nrf2 and Keap1. 4-OHE2 failed to interrupt the interaction between Keap1 and Nrf2 and to induce HO-1 expression in Keap1-C273S or C288S mutant cells. Lano-LC-ESI-MS/MS analysis in MCF-10A-Keap1-WT cells which were treated with 4-OHE2 revealed that the peptide fragment containing Cys288 gained a molecular mass of 287.15 Da, equivalent to the addition of a single molecule of 4-OHE2-derived ortho-quinones.
Collapse
Affiliation(s)
- Sin-Aye Park
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Mee-Hyun Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 136-742, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea.,Cancer Research Institute, Seoul National University, Seoul 110-799, South Korea
| |
Collapse
|
11
|
Shull JD, Dennison KL, Chack AC, Trentham-Dietz A. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genomics 2018; 50:215-234. [PMID: 29373076 DOI: 10.1152/physiolgenomics.00105.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous laboratory and epidemiologic studies strongly implicate endogenous and exogenous estrogens in the etiology of breast cancer. Data summarized herein suggest that the ACI rat model of 17β-estradiol (E2)-induced mammary cancer is unique among rodent models in the extent to which it faithfully reflects the etiology and biology of luminal types of breast cancer, which together constitute ~70% of all breast cancers. E2 drives cancer development in this model through mechanisms that are largely dependent upon estrogen receptors and require progesterone and its receptors. Moreover, mammary cancer development appears to be associated with generation of oxidative stress and can be modified by multiple dietary factors, several of which may attenuate the actions of reactive oxygen species. Studies of susceptible ACI rats and resistant COP or BN rats provide novel insights into the genetic bases of susceptibility and the biological processes regulated by genetic determinants of susceptibility. This review summarizes research progress resulting from use of these physiologically relevant rat models to advance understanding of breast cancer etiology and prevention.
Collapse
Affiliation(s)
- James D Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kirsten L Dennison
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Aaron C Chack
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Amy Trentham-Dietz
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
12
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
13
|
Modulatory Effect of Fermented Papaya Extracts on Mammary Gland Hyperplasia Induced by Estrogen and Progestin in Female Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8235069. [PMID: 29359010 PMCID: PMC5735651 DOI: 10.1155/2017/8235069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Fermented papaya extracts (FPEs) are obtained by fermentation of papaya by Aspergillus oryzae and yeasts. In this study, we investigated the protective effects of FPEs on mammary gland hyperplasia induced by estrogen and progestogen. Rats were randomly divided into 6 groups, including a control group, an FPE-alone group, a model group, and three FPE treatment groups (each receiving 30, 15, or 5 ml/kg FPEs). Severe mammary gland hyperplasia was induced upon estradiol benzoate and progestin administration. FPEs could improve the pathological features of the animal model and reduce estrogen levels in the serum. Analysis of oxidant indices revealed that FPEs could increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, decrease malondialdehyde (MDA) level in the mammary glands and serum of the animal models, and decrease the proportion of cells positive for the oxidative DNA damage marker 8-oxo-dG in the mammary glands. Additionally, estradiol benzoate and progestin altered the levels of serum biochemical compounds such as aspartate transaminase (AST), total bilirubin (TBIL), and alanine transaminase (ALT), as well as hepatic oxidant indices such as SOD, GSH-Px, MDA, and 8-oxo-2′-deoxyguanosine (8-oxo-dG). These indices reverted to normal levels upon oral administration of a high dose of FPEs. Taken together, our results indicate that FPEs can protect the mammary glands and other visceral organs from oxidative damage.
Collapse
|
14
|
Chatterjee A, Ronghe A, Padhye SB, Spade DA, Bhat NK, Bhat HK. Antioxidant activities of novel resveratrol analogs in breast cancer. J Biochem Mol Toxicol 2017; 32. [PMID: 28960787 DOI: 10.1002/jbt.21925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/02/2023]
Abstract
The objective of the present study was to characterize the role of novel resveratrol (Res) analogs: 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1, 2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) as potent antioxidants against breast cancer. Non-neoplastic breast epithelial cell lines MCF-10A and MCF-10F were treated with 17β-estradiol (E2), Res, HPIMBD, and TIMBD for up to 72 h. mRNA and protein levels of antioxidant genes, superoxide dismutase 3 (SOD3) and N-quinoneoxidoreductase-1 (NQO1) and transcription factors, nuclear factor erythroid 2-related factor (Nrf) 1, 2 and 3 were quantified after the above treatments. Generation of reactive oxygen species (ROS) was measured by CM-H2-DCFDA and oxidative-DNA damage was determined by measuring 8-hydroxy-2-deoxyguanosine (8-OHdG). HPIMBD and TIMBD scavenged cellular ROS production, attenuated oxidative DNA damage, increased mRNA and protein expression levels of SOD3 and NQO1 and activated Nrf signaling pathway. Our studies demonstrate that HPIMBD and TIMBD have the potential as novel antioxidants to prevent development of breast cancer.
Collapse
Affiliation(s)
- Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Subhash B Padhye
- Department of Chemistry, Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, India
| | - David A Spade
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| |
Collapse
|
15
|
Romagnolo DF, Donovan MG, Papoutsis AJ, Doetschman TC, Selmin OI. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr Dev Nutr 2017; 1:e000562. [PMID: 29955703 PMCID: PMC5998349 DOI: 10.3945/cdn.117.000562] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Previous studies have suggested a causative role for agonists of the aromatic hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)-silenced breast tumors, for which prospects for treatment remain poor. Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in human estrogen receptor α (ERα)-positive Michigan Cancer Foundation-7 (MCF-7) and ERα-negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells, respectively, with inducible and constitutively active AhR. Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN and (-)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell proliferation. Controls for DNA methylation and proliferation were changes in expression of DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN and α-naphthoflavone (αNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the effects of GEN and αNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and CYP1B1, and AhR mRNA expression. Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1 protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth while inducing BRCA-1 and CYP1A1. Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG methylation and downregulation in ERα-positive breast cancer cells with activated AhR. GEN and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERα via CpG demethylation in ERα-negative breast cancer cells harboring constitutively active AhR.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Micah G Donovan
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Tom C Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| |
Collapse
|
16
|
Wu CW, Liu HC, Yu YL, Hung YT, Wei CW, Yiang GT. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways. Oncol Rep 2017; 37:2177-2184. [PMID: 28259996 DOI: 10.3892/or.2017.5439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Methotrexate (MTX) is widely used as both an anticancer and anti-rheumatoid arthritis drug. Although MTX has been used to inhibit the growth of many cancer cells, it cannot effectively inhibit growth of triple-negative breast cancer cells (TNBC cells). Vitamin C is an antioxidant that can prevent oxidative stress. In addition, vitamin C has been applied as adjunct treatment for growth inhibition of cancer cells. Recent studies indicated that combined treatment with vitamin C and MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell growth through G2/M elongation. However, the mechanisms remain unknown. The aim of the present study was to determine whether combined treatment with low-dose vitamin C and MTX inhibits TNBC cell growth and to investigate the mechanisms of vitamin C/MTX-induced cytotoxicity. Neither low-dose vitamin C alone nor MTX alone inhibited TNBC cell growth. However, combined low-dose vitamin C and MTX had synergistic anti-proliferative/cytotoxic effects on TNBC cells. In addition, co-treatment increased H2O2 levels and activated both caspase-3 and p38 cell death pathways.
Collapse
Affiliation(s)
- Ching-Wen Wu
- Department of Cardiac Surgery, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| |
Collapse
|
17
|
Zhu Y, Bi F, Li Y, Yin H, Deng N, Pan H, Li D, Xiao B. α- and β-Naphthoflavone synergistically attenuate H 2O 2-induced neuron SH-SY5Y cell damage. Exp Ther Med 2017; 13:1143-1150. [PMID: 28450955 DOI: 10.3892/etm.2017.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies have demonstrated an association between neurological diseases and oxidative stress (OS). Naphthoflavone is a synthetic derivative of naturally occurring flavonoids that serves an important role in the treatment and prevention of OS-related diseases. The current study was designed to apply α- and β-Naphthoflavone individually and in combination to counteract the detrimental effects of OS on neurons in vitro. Neuronal SH-SY5Y cells were subjected to 20 µM H2O2, followed by exposure to 20 µM α-Naphthoflavone and/or 10 µM β-Naphthoflavone. Results indicated that α- and β-Naphthoflavone effectively antagonized the apoptosis-promoting effect of H2O2 on neuronal SH-SY5Y cells, and that β-Naphthoflavone significantly (P<0.05) reversed H2O2-inhibited cell viability. Notably, co-treatment of α- and β-Naphthoflavone reversed the H2O2-induced apoptosis rate elevation and cell viability reduction. Further analysis demonstrated that H2O2 inhibited the activities of antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase, but this was reversed by the co-treatment with α- and β-Naphthoflavone and selectively enhanced by the treatment with α- or β-Naphthoflavone. H2O2-stimulated p38 mitogen-activated protein kinase activation was repressed following treatment with α- and/or β-Naphthoflavone, along with a decreased expression of the apoptosis-related factors and inhibited caspase-3 activation. In conclusion, co-treatment with α- and β-Naphthoflavone minimized H2O2-led neuron damage compared with treatment with α- or β-Naphthoflavone, suggesting a synergetic effect between α- and β-Naphthoflavone. This indicates that utilizing α- and β-Naphthoflavone together in the clinical setting may provide a novel therapeutic for neurological disease.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanchun Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Huiming Yin
- Department of Respiration, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Na Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haiquan Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongfang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Rhon-Calderón EA, Galarza RA, Lomniczi A, Faletti AG. The systemic and gonadal toxicity of 3-methylcholanthrene is prevented by daily administration of α-naphthoflavone. Toxicology 2016; 353-354:58-69. [PMID: 27163632 DOI: 10.1016/j.tox.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated the effect of 3-methylcholanthrene (3MC) on sexual maturity and the ability of α-naphthoflavone (αNF) to prevent this action. To this end, immature rats were daily injected intraperitoneally with 3MC (0.1 or 1mg/kg) and/or αNF (80mg/kg). Body weight, vaginal opening and estrous cycle were recorded and ovaries were obtained on the day of estrus. Ovarian weight, ovulation rate (measured by the number of oocytes within oviducts), and follicular development (determined by histology) were studied. No differences were found in body weight, ovarian weight, day of vaginal opening, or the establishment of the estrous cycle among the different groups of rats. However, animals treated with 3MC, at both doses, exhibited a lower number of primordial, primary, preantral and antral follicles than controls. Also, 3MC inhibited the ovulation rate and induced an overexpression of both the Cyp1a1 and Cyp1b1 genes, measured by chromatin immunoprecipitation assay. The daily treatment with αNF alone increased the number of follicles in most of the stages analyzed when compared with controls. Moreover, the αNF treatment prevented completely not only the 3MC-induced decrease in all types of follicles but also the 3MC-induced overexpression of Cyp enzymes and the genetic damage in bone marrow cells and oocytes. These results suggest that (i) daily exposure to 3MC during the pubertal period destroys the follicle reserve and alters the ovulation rate; (ii) the 3MC action seems to be mediated by an aryl hydrocarbon receptor-dependent mechanism; (iii) daily administration of αNF has a clear stimulatory action on the ovarian function; and (iv) αNF may prevent both the systemic and gonadal 3MC-induced toxicity.
Collapse
Affiliation(s)
- Eric Alejandro Rhon-Calderón
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Alejandra Galarza
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Alicia Graciela Faletti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI. Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer 2015; 15:1026. [PMID: 26715507 PMCID: PMC4696163 DOI: 10.1186/s12885-015-2044-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Only 5–10 % of breast cancer cases is linked to germline mutations in the BRCA-1 gene and occurs early in life. Conversely, sporadic breast tumors, which represent 90-95 % of breast malignancies, have lower BRCA-1 expression, but not mutated BRCA-1 gene, and tend to occur later in life in combination with other genetic alterations and/or environmental exposures. The latter may include environmental and dietary factors that activate the aromatic hydrocarbon receptor (AhR). Therefore, understanding if changes in expression and/or activation of the AhR are associated with somatic inactivation of the BRCA-1 gene may provide clues for breast cancer therapy. Methods We evaluated Brca-1 CpG promoter methylation and expression in mammary tumors induced in Sprague–Dawley rats with the AhR agonist and mammary carcinogen 7,12-dimethyl-benzo(a)anthracene (DMBA). Also, we tested in human estrogen receptor (ER)α-negative sporadic UACC-3199 and ERα-positive MCF-7 breast cancer cells carrying respectively, hyper- and hypomethylated BRCA-1 gene, if the treatment with the AhR antagonist α-naphthoflavone (αNF) modulated BRCA-1 and ERα expression. Finally, we examined the association between expression of AhR and BRCA-1 promoter CpG methylation in human triple-negative (TNBC), luminal-A (LUM-A), LUM-B, and epidermal growth factor receptor-2 (HER-2)-positive breast tumor samples. Results Mammary tumors induced with DMBA had reduced BRCA-1 and ERα expression; higher Brca-1 promoter CpG methylation; increased expression of Ahr and its downstream target Cyp1b1; and higher proliferation markers Ccnd1 (cyclin D1) and Cdk4. In human UACC-3199 cells, low BRCA-1 was paralleled by constitutive high AhR expression; the treatment with αNF rescued BRCA-1 and ERα, while enhancing preferential expression of CYP1A1 compared to CYP1B1. Conversely, in MCF-7 cells, αNF antagonized estradiol-dependent activation of BRCA-1 without effects on expression of ERα. TNBC exhibited increased basal AhR and BRCA-1 promoter CpG methylation compared to LUM-A, LUM-B, and HER-2-positive breast tumors. Conclusions Constitutive AhR expression coupled to BRCA-1 promoter CpG hypermethylation may be predictive markers of ERα-negative breast tumor development. Regimens based on selected AhR modulators (SAhRMs) may be useful for therapy against ERα-negative tumors, and possibly, TNBC with increased AhR and hypermethylated BRCA-1 gene.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA.
| | - Christina Laukaitis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA. .,Department of Medicine, University of Arizona College of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| |
Collapse
|
20
|
Chemopreventive potential of fungal taxol against 7, 12-dimethylbenz[a]anthracene induced mammary gland carcinogenesis in Sprague Dawley rats. Eur J Pharmacol 2015; 767:108-18. [PMID: 26460148 DOI: 10.1016/j.ejphar.2015.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022]
Abstract
Breast cancer is the second most prevalent cancer and foremost global public health problem. The present study was designed to appraise the chemopreventive potential of fungal taxol against 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary gland carcinogenesis in Sprague Dawley rats. After 90 days of tumor induction, fungal and authentic taxol were given intraperitoneally once in a week for four weeks. Infrared thermal imaging analysis, serum biochemical parameters such as lipid peroxidase (LPO), creatinine, enzymic and non enzymic antioxidants, liver markers tests such as alanine transaminase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TG) and lipoproteins was analysed. In addition, histopathological observation (breast, kidney and liver), immunohistochemical analysis (p53 and Her2/neu) and western blotting experiments (bcl-2, bax and caspase-9) were performed both in control and experimental animals. In thermal imaging, decreased temperature was observed in rat treated with fungal and authentic taxol when compared to tumor induced rats. The significant decrease in LPO, creatinine, ALT, AST, TC, TG, lipoproteins and increase in enzymic, non-enzymic antioxidants were exemplified in serum of treated groups. Further histopathology, immunohistochemical and western blot analysis (bax, cas-9 and bcl-2) of apoptotic markers in breast tissues clearly showed the anti-carcinogenic property of fungal taxol. Our findings implement that fungal taxol is a potential chemo preventive agent against DMBA induced mammary gland carcinogenesis.
Collapse
|
21
|
Chang YP, Huang CC, Shen CC, Tsai KC, Ueng YF. Differential inhibition of CYP1-catalyzed regioselective hydroxylation of estradiol by berberine and its oxidative metabolites. Drug Metab Pharmacokinet 2015; 30:374-83. [DOI: 10.1016/j.dmpk.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
22
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
23
|
Uno T, Ogura C, Izumi C, Nakamura M, Yanase T, Yamazaki H, Ashida H, Kanamaru K, Yamagata H, Imaishi H. Point mutation of cytochrome P450 2A6 (a polymorphic variant CYP2A6.25) confers new substrate specificity towards flavonoids. Biopharm Drug Dispos 2015. [DOI: 10.1002/bdd.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chika Ogura
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chiho Izumi
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Masahiko Nakamura
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science; Kyoto Gakuen University; 1-1 Nanjo, Sogabe Kameoka Kyoto 621-8555 Japan
| | - Takeshi Yanase
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Hitoshi Ashida
- Laboratory of Biochemistry Frontiers, Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamagata
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental Genomics; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| |
Collapse
|
24
|
Selective targeting of FAK–Pyk2 axis by alpha-naphthoflavone abrogates doxorubicin resistance in breast cancer cells. Cancer Lett 2015; 362:25-35. [DOI: 10.1016/j.canlet.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/26/2023]
|
25
|
Campbell EJ, Dachs GU. Current limitations of murine models in oncology for ascorbate research. Front Oncol 2014; 4:282. [PMID: 25353008 PMCID: PMC4196513 DOI: 10.3389/fonc.2014.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
The role of vitamin C (ascorbate) in cancer prevention, tumor growth, and treatment is of intense public interest. Clinical trial data have been sparse, contradictory, and highly controversial, and robust pre-clinical data are required for progress. This paper reviews pre-clinical models and their limitations with respect to ascorbate research. Most studies have utilized animals able to synthesize ascorbate and thus are not ideal models of the human condition. More recently, genetically modified mouse models have become available; yet, all studies compared healthy and scorbutic mice. The majority of investigations to date concluded that increased ascorbate led to decreased tumor growth, but data on mechanisms and doses are inconclusive. Clinically relevant animal studies are still required to convince a generally sceptical medical audience of the potential worth of ascorbate as an adjunct to therapy.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| |
Collapse
|
26
|
Chatterjee A, Ronghe A, Singh B, Bhat NK, Chen J, Bhat HK. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis. J Biochem Mol Toxicol 2014; 28:529-38. [PMID: 25130429 DOI: 10.1002/jbt.21594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and NAD(P)H quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways.
Collapse
Affiliation(s)
- Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, Bhat HK. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 2014; 35:1872-80. [PMID: 24894866 DOI: 10.1093/carcin/bgu120] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective pathways.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA, Institute of Comparative Medicine, Columbia University, New York, NY 10032, USA and Division of Pharmacology and Toxicology, School of Pharmacy and School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rivka Shoulson
- Institute of Comparative Medicine, Columbia University, New York, NY 10032, USA and
| | | | - Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy and
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy and
| | - Daniel C Dim
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy and
| |
Collapse
|
28
|
Maria Zowczak-Drabarczyk M, Murawa D, Kaczmarek L, Połom K, Litwiniuk M. Total antioxidant status in plasma of breast cancer patients in relation to ERβ expression. Contemp Oncol (Pozn) 2013; 17:499-503. [PMID: 24592136 PMCID: PMC3934035 DOI: 10.5114/wo.2013.38782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
AIM OF THE STUDY The aim of this pilot study was to evaluate the plasma total antioxidant capacity (TAS) in breast cancer patients in relation to ERβ expression. MATERIAL AND METHODS The study group consisted of newly diagnosed consecutive female breast cancer patients (n = 41) and controls (n = 28) randomly selected from women with benign breast disease. TAS was determined with the ABTS reagent. Immunostaining for ERβ was performed using polyclonal antibodies. ERα, PgR and HER-2 were measured routinely (immunostaining for ERα and PgR with monoclonal antibodies and EnVision detection system; immunohistochemical method/FISH for HER-2 expression). RESULTS The plasma TAS was significantly decreased in the breast cancer patients in comparison to the controls independently of hormonal and lymph node status. The TAS level was not significantly different between breast cancer subgroups either in relation to the ERβ expression (ERβ+ vs. ERβ-) or considering the steroid receptor status (ERα+, ERβ+, Pg+ vs. ERα+, ERβ-, Pg+) even in the selected lymph node negative subgroup. Similarly, HER-2 expression did not significantly affect the TAS concentration. A tendency towards higher TAS level in all ERβ negative breast cancer subgroups was observed. CONCLUSIONS The results might confirm enhanced consumption of plasma antioxidants in breast cancer patients. The determination of ERβ isoforms along with parameters of redox status might enable better understanding of their mutual influence.
Collapse
Affiliation(s)
| | - Dawid Murawa
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Leszek Kaczmarek
- Department of General Surgery with Urological and Surgical Oncology Units, Medical Center in Pleszew, Poland
| | - Karol Połom
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Maria Litwiniuk
- Chemotherapy Department, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
29
|
Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013; 13:253. [PMID: 23697596 PMCID: PMC3665669 DOI: 10.1186/1471-2407-13-253] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. METHODS Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. RESULTS The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. CONCLUSIONS Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
30
|
Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 2013; 34:1165-72. [PMID: 23492819 DOI: 10.1093/carcin/bgt026] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that regulate the expression of approximately 60% of all human genes and play important roles in disease processes. Recent studies have demonstrated a link between dysregulated expression of miRNAs and breast carcinogenesis. Long-term estrogen exposure is implicated in development of human breast cancers, yet underlying mechanisms remain elusive. We have recently demonstrated that antioxidant vitamin C (vit C) prevents estrogen-induced breast tumor development. In this study, we investigated the role of vit C in the regulation of microRNA-93 (miR-93) and its target gene(s) in a rat model of mammary carcinogenesis. Female August Copenhagen Irish (ACI) rats were treated with vit C in the presence or absence of 17β-estradiol (E2) for 8 months. We demonstrate an increased expression of the miR-93 in E2-treated mammary tissues and in human breast cell lines and vit C treatment reverted E2-mediated increase in miR-93 levels. MiRNA target prediction programs suggest one of the target genes of miR-93 to be nuclear factor erythroid 2-related factor 2 (NRF2). In contrast with miR-93 expression, NRF2 protein expression was significantly decreased in E2-treated mammary tissues, mammary tumors, and in breast cancer cell lines, and its expression was significantly increased after vit C treatment. Ectopic expression of miR-93 decreased protein expression of NRF2 and NRF2-regulated genes. Furthermore, miR-93 decreased apoptosis, increased colony formation, mammosphere formation, cell migration and DNA damage in breast epithelial cells, whereas silencing of miR-93 in these cells inhibited these carcinogenic processes. Taken together, our findings suggest an oncogenic potential of miR-93 during E2-induced breast carcinogenesis.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Background: Breast cancer, a heterogeneous disease has been broadly classified into oestrogen receptor positive (ER+) or oestrogen receptor negative (ER−) tumour types. Each of these tumours is dependent on specific signalling pathways for their progression. While high levels of survivin, an anti-apoptotic protein, increases aggressive behaviour in ER− breast tumours, oxidative stress (OS) promotes the progression of ER+ breast tumours. Mechanisms and molecular targets by which OS promotes tumourigenesis remain poorly understood. Results: DETA-NONOate, a nitric oxide (NO)-donor induces OS in breast cancer cell lines by early re-localisation and downregulation of cellular survivin. Using in vivo models of HMLEHRAS xenografts and E2-induced breast tumours in ACI rats, we demonstrate that high OS downregulates survivin during initiation of tumourigenesis. Overexpression of survivin in HMLEHRAS cells led to a significant delay in tumour initiation and tumour volume in nude mice. This inverse relationship between survivin and OS was also observed in ER+ human breast tumours. We also demonstrate an upregulation of NADPH oxidase-1 (NOX1) and its activating protein p67, which are novel markers of OS in E2-induced tumours in ACI rats and as well as in ER+ human breast tumours. Conclusion: Our data, therefore, suggest that downregulation of survivin could be an important early event by which OS initiates breast tumour formation.
Collapse
|
32
|
Singh B, Bhat HK. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 2012; 33:2601-10. [PMID: 23027624 DOI: 10.1093/carcin/bgs300] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data and studies in rodent models strongly support the role of estrogens in the development of breast cancers. Oxidative stress has been implicated in this carcinogenic process. We have recently demonstrated that antioxidants vitamin C or butylated hydroxyanisole (BHA) severely inhibit 17β-estradiol (E2)-induced breast tumor development in female ACI rats. The objective of this study was to characterize the mechanism of antioxidant-mediated prevention of breast cancer. Female August Copenhagen Irish (ACI) rats were treated with E2, vitamin C, vitamin C + E2, BHA and BHA + E2 for up to 8 months. Superoxide dismutase 3 (SOD3) was suppressed in E2-exposed mammary tissues and in mammary tumors of rats treated with E2. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. 8-Hydroxydeoxyguanosine (8-OHdG) levels determined as a marker of oxidative DNA damage were higher in E2-exposed mammary tissues and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissues and in MCF-10A cells. Increased DNA damage, colony and mammosphere formation, and migration in SOD3 knocked down MCF-10A cells, and nuclear translocation of SOD3 in vitamin C-treated mammary tissues and in MCF-10A cells suggest protective role of SOD3 against DNA damage and mammary carcinogenesis. Our studies further demonstrate that SOD3, but not SOD2 and SOD1, is induced by antioxidants and is regulated through NRF2. SOD3 may thus be an important gene in defense against oxidative stress and in the prevention of estrogen-mediated breast cancer.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | |
Collapse
|
33
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|
34
|
Singh B, Bhat NK, Bhat HK. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 2011; 33:156-63. [PMID: 22072621 DOI: 10.1093/carcin/bgr237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exact mechanisms underlying the initiation and progression of estrogen-related cancers are not clear. Literature, evidence and our studies strongly support the role of estrogen metabolism-mediated oxidative stress in estrogen-induced breast carcinogenesis. We have recently demonstrated that antioxidants vitamin C and butylated hydroxyanisole (BHA) or estrogen metabolism inhibitor α-naphthoflavone (ANF) inhibit 17β-estradiol (E2)-induced mammary tumorigenesis in female ACI rats. The objective of the current study was to identify the mechanism of antioxidant-mediated protection against E2-induced DNA damage and mammary tumorigenesis. Female ACI rats were treated with E2 in the presence or absence of vitamin C or BHA or ANF for up to 240 days. Nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H-quinone oxidoreductase 1 (NQO1) were suppressed in E2-exposed mammary tissue and in mammary tumors after treatment of rats with E2 for 240 days. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. Time course studies indicate that NQO1 levels tend to increase after 4 months of E2 treatment but decrease on chronic exposure to E2 for 8 months. Vitamin C and BHA significantly increased NQO1 levels after 120 days. 8-Hydroxydeoxyguanosine (8-OHdG) levels were higher in E2-exposed mammary tissue and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissue. In vitro studies using silencer RNA confirmed the role of NQO1 in prevention of oxidative DNA damage. Our studies further demonstrate that NQO1 upregulation by antioxidants is mediated through NRF2.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
35
|
Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6:e25125. [PMID: 21966433 PMCID: PMC3180376 DOI: 10.1371/journal.pone.0025125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
Collapse
|
36
|
Chen Z, Zhang Y, Yang J, Jin M, Wang XW, Shen ZQ, Qiu Z, Zhao G, Wang J, Li JW. Estrogen promotes benzo[a]pyrene-induced lung carcinogenesis through oxidative stress damage and cytochrome c-mediated caspase-3 activation pathways in female mice. Cancer Lett 2011; 308:14-22. [PMID: 21601985 DOI: 10.1016/j.canlet.2011.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
Abstract
Estrogen may contribute to the development of smoking-induced lung cancer in women. To test this hypothesis, an mouse model was used to investigate the effects of 17 beta-estradiol (E2) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis. We found that B[a]P could cause oxidative stress damage, upregulate mitochondrial cytochrome-c and caspase-3 expression, induce lung carcinogenesis in female mice, E2 promoted these effects of B[a]P while tamoxifen (TAM) inhibited this effects of E2. We conclude that E2 can promote the tumorigenic effects of B[a]P in female mice, and oxidative stress damage and activation of cytochrome-c-mediated caspase-3 pathway may be involved in this process.
Collapse
Affiliation(s)
- Zhaoli Chen
- Department of Health and Environment, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nitric oxide is a pleiotropic ancestral molecule, which elicits beneficial effect in many physiological settings but is also tenaciously expressed in numerous pathological conditions, particularly breast tumors. Nitric oxide is particularly harmful in adipogenic milieu of the breast, where it initiates and promotes tumorigenesis. Epidemiological studies have associated populations at a greater risk for developing breast cancer, predominantly estrogen receptor positive tumors, to express specific polymorphic forms of endothelial nitric oxide synthase, that produce sustained low levels of nitric oxide. Low sustained nitric oxide generates oxidative stress and inflammatory conditions at susceptible sites in the heterogeneous microenvironment of the breast, where it promotes cancer related events in specific cell types. Inflammatory conditions also stimulate inducible nitric oxide synthase expression, which dependent on the microenvironment, could promote or inhibit mammary tumors. In this review we re-examine the mechanisms by which nitric oxide promotes initiation and progression of breast cancer and address some of the controversies in the field.
Collapse
Affiliation(s)
- Shehla Pervin
- Division of Endocrinology and Metabolism at Charles Drew University of Medicine and Science, Los Angeles, California 90059, USA.
| | | | | |
Collapse
|
38
|
Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats. Toxicol Appl Pharmacol 2010; 247:83-90. [PMID: 20600213 DOI: 10.1016/j.taap.2010.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17beta-estradiol (E(2)). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E(2)-induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E(2) pellets, co-exposure to quercetin did not protect rats from E(2)-induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin+E(2)-treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin+E(2) group relative to those in the E(2) group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F(2alpha) (8-iso-PGF(2alpha)) levels as a marker of oxidant stress showed that quercetin did not decrease E(2)-induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E(2)-induced oxidant stress and may exacerbate breast carcinogenesis in E(2)-treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E(2) and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E(2) and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E(2)-induced breast tumors in female ACI rats.
Collapse
|
39
|
Aiyer HS, Gupta RC. Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prev Res (Phila) 2010; 3:727-37. [PMID: 20501861 DOI: 10.1158/1940-6207.capr-09-0260] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine whether dietary berries and ellagic acid prevent 17beta-estradiol (E(2))-induced mammary tumors by altering estrogen metabolism, we randomized August-Copenhagen Irish rats (n = 6 per group) into five groups: sham implant + control diet, E(2) implant + control diet (E(2)-CD), E(2) + 2.5% black raspberry (E(2)-BRB), E(2) + 2.5% blueberry (E(2)-BB), and E(2) + 400 ppm ellagic acid (E(2)-EA). Animals were euthanized at early (6 wk), intermediate (18 wk), and late (24 wk) phases of E(2) carcinogenesis, and the mammary tissue was analyzed for gene expression changes using quantitative real-time PCR. At 6 weeks, E(2) treatment caused a 48-fold increase in cytochrome P450 1A1 (CYP1A1; P < 0.0001), which was attenuated by both BRB and BB diets to 12- and 21-fold, respectively (P < 0.001). E(2) did not alter CYP1B1 levels, but both berry and EA diets significantly suppressed it by 11- and 3.5-fold, respectively, from baseline (P < 0.05). There was a 5-fold increase in 17beta-hydroxysteroid dehydrogenase 7 (17betaHSD7), and this was moderately abrogated to approximately 2-fold by all supplementation (P < 0.05). At 18 weeks, CYP1A1 was elevated by 15-fold in E(2)-CD and only E(2)-BB reduced this increase to 7-fold (P < 0.05). Catechol-O-methyltransferase expression was elevated 2-fold by E(2) treatment (P < 0.05), and all supplementation reversed this. At 24 weeks, CYP1A1 expression was less pronounced but still high (8-fold) in E(2)-treated rats. This increase was reduced to 3.2- and 4.6-fold by E(2)-BRB and E(2)-EA, respectively (P < 0.05), but not by E(2)-BB. Supplementation did not alter the effect of E(2) on steroid receptors. The diets also significantly suppressed mammary tumor incidence (10-30%), volume (41-67%), and multiplicity (38-51%; P < 0.05). Berries may prevent mammary tumors by suppressing the levels of E(2)-metabolizing enzymes during the early phase of E(2) carcinogenesis.
Collapse
Affiliation(s)
- Harini S Aiyer
- James Graham Brown Cancer Center, University of Louisville, KY 40202, USA
| | | |
Collapse
|
40
|
Lee EJ, Oh SY, Kim MK, Ahn SH, Son BH, Sung MK. Modulatory effects of alpha- and gamma-tocopherols on 4-hydroxyestradiol induced oxidative stresses in MCF-10A breast epithelial cells. Nutr Res Pract 2009; 3:185-91. [PMID: 20090883 PMCID: PMC2808717 DOI: 10.4162/nrp.2009.3.3.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/10/2009] [Accepted: 09/16/2009] [Indexed: 11/17/2022] Open
Abstract
The elevated level of circulating estradiol increases the risk of breast tumor development. To gain further insight into mechanisms involved in their actions, we investigated the molecular mechanisms of 4-hydroxyestradiol (4-OHE2) to initiate and/or promote abnormal cell growth, and of α- or γ-tocopherol to inhibit this process. MCF-10A, human breast epithelial cells were incubated with 0.1 µM 4-OHE2, either with or without 30 µM tocopherols for 96 h. 4-OHE2 caused the accumulation of intracellular ROS, while cellular GSH/GSSG ratio and MnSOD protein levels were decreased, indicating that there was an oxidative burden. 4-OHE2 treatment also changed the levels of DNA repair proteins, BRCA1 and PARP-1. γ-Tocopherol suppressed the 4-OHE2-induced increases in ROS, GSH/GSSG ratio, and MnSOD protein expression, while α-tocopherol up-regulated BRCA1 and PARP-1 protein expression. In conclusion, 4-OHE2 increases oxidative stress reducing the level of proteins related to DNA repair. Tocopherols suppressed oxidative stress by scavenging ROS or up-regulating DNA repair elements.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Food and Nutrition, Sookmyung Women's University, 52 Hyochangwon-gil, Yongsan-gu, Seoul 140-742, Korea
| | | | | | | | | | | |
Collapse
|