1
|
Yang J, Lewis JS, Zi J, Andl T, Lee E, Andl CD, Liu Q, Beauchamp RD, Means AL. Interaction of the tumor suppressor SMAD4 and WNT signaling in progression to oral squamous cell carcinoma. J Pathol 2024; 264:4-16. [PMID: 38922866 PMCID: PMC11300146 DOI: 10.1002/path.6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
SMAD4 is a tumor suppressor mutated or silenced in multiple cancers, including oral cavity squamous cell carcinoma (OSCC). Human clinical samples and cell lines, mouse models and organoid culture were used to investigate the role that SMAD4 plays in progression from benign disease to invasive OSCC. Human OSCC lost detectable SMAD4 protein within tumor epithelium in 24% of cases, and this loss correlated with worse progression-free survival independent of other major clinical and pathological features. A mouse model engineered for KrasG12D expression in the adult oral epithelium induced benign papillomas, however the combination of KrasG12D with loss of epithelial Smad4 expression resulted in rapid development of invasive carcinoma with features of human OSCC. Examination of regulatory pathways in 3D organoid cultures of SMAD4+ and SMAD4- mouse tumors with Kras mutation found that either loss of SMAD4 or inhibition of TGFβ signaling upregulated the WNT pathway and altered the extracellular matrix. The gene signature of the mouse tumor organoids lacking SMAD4 was highly similar to the gene signature of human head and neck squamous cell carcinoma. In summary, this work has uncovered novel mechanisms by which SMAD4 acts as a tumor suppressor in OSCC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jing Yang
- Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - James S. Lewis
- Dept. of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Jinghuan Zi
- Dept. of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Ethan Lee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Qi Liu
- Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Robert D. Beauchamp
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Anna L. Means
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
3
|
Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation. Genes (Basel) 2023; 14:genes14020247. [PMID: 36833174 PMCID: PMC9956319 DOI: 10.3390/genes14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3' UTR region and twenty-nine in 5' UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3' UTR SNPs rs1447651774 and rs115170199 and the 5' UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5' UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3' and 5' UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases.
Collapse
|
4
|
El Hanbuli HM, Abou Sarie MA. KRAS Protein Expression in Oral Squamous Cell Carcinoma: A Potential Marker for Progression and Prognosis. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:469-479. [PMID: 36532636 PMCID: PMC9745753 DOI: 10.30699/ijp.2022.550727.2856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/17/2022] [Indexed: 07/20/2023]
Abstract
BACKGROUND & OBJECTIVE Emerging evidence suggests that KRAS could play an important role in squamous cell carcinoma; however, its role in oral squamous cell carcinoma (OSCC) is largely unknown. The aim of the current study was to investigate the expression of KRAS, Ki-67, Cyclin D1, and Bcl2 in OSCC and their association with clinicopathological features. METHODS Forty paraffin blocks of retrospective histologically diagnosed cases of OSCC and 20 blocks of oral leukoplakia with epithelial dysplasia were obtained from two hospitals between 2018 and 2021. The paraffin-embedded tissue was analyzed for the expression of KRAS for oral epithelial dysplasia and OSCC, and ki-67, Cyclin D1, and bcl2 were analyzed only for OSCC. The results were correlated with each other and with different clinicopathological features and were statistically analyzed. RESULTS KRAS expression was significantly associated with histological tumor grade, tumor extent, presence of nodal and distant metastasis, pathological stage, and the presence of lymphovascular invasion (P=<0.001, 0.001, 0.001, 0.009, <0.001, and <0.001, respectively). The KRAS expression was positively correlated with the histological grade, tumor extent, nodal status, and the pathological stage (r=0.712, 0.649, 0.646, and 0.865, respectively). A positive correlation was also found with the expression of Bcl2, Cyclin D1, and Ki-67 (r=0.81, 0.723, and 0.698, respectively). The KRAS expression in oral epithelial dysplasia was significantly lower than that in OSCC (P=0.003). CONCLUSION KRAS may be a potential prognostic marker for OSCC and may play a role in its progression.
Collapse
Affiliation(s)
- Hala M. El Hanbuli
- Corresponding Information: Hala M. El Hanbuli, Department of Pathology, Faculty of Medicine, Fayoum University, Egypt
| | | |
Collapse
|
5
|
Ulusan M, Sen S, Yilmazer R, Dalay N, Demokan S. The let-7 microRNA Binding Site Variant in KRAS as a Predictive Biomarker for Head and Neck Cancer Patients With Lymph Node Metastasis. Pathol Res Pract 2022; 239:154147. [DOI: 10.1016/j.prp.2022.154147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
|
6
|
Farhadi A, Lv L, Song J, Zhang Y, Ye S, Zhang N, Zheng H, Li S, Zhang Y, Ikhwanuddin M, Ma H. Whole-transcriptome RNA sequencing revealed the roles of chitin-related genes in the eyestalk abnormality of a novel mud crab hybrid (Scylla serrata ♀ × S. paramamosain ♂). Int J Biol Macromol 2022; 208:611-626. [PMID: 35351543 DOI: 10.1016/j.ijbiomac.2022.03.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Chitin is a kind of insoluble structural polysaccharide and plays different roles in different species. In crustaceans, it forms the structural components in the exoskeleton. In our previous studies, novel mud crab hybrids have been produced from the interspecific hybridization of Scylla serrata ♀ × S. paramamosain ♂. Some of the hybrid crabs have been found to be morphologically (eyestalk) abnormal, but the genetic mechanism remains unknown. To address this question, we performed whole-transcriptome RNA sequencing on the control group (normal hybrids), abnormal hybrids, and S. paramamosain to uncover the genetic basis underlying this morphological abnormality. A total of 695 mRNAs, 10 miRNAs, 44 circRNAs, and 1957 lncRNAs were differentially expressed between normal and abnormal hybrids. Several differentially expressed genes (DEGs) associated with chitin and cuticle metabolism were identified, including chitin synthase, chitinase, chitin deacetylase, β-N-acetylglucosaminidase, β-1,4-endoglucanase, N-alpha-acetyltransferase, cuticle proprotein, early cuticle protein, and arthrodial cuticle protein. Functional analysis showed that DE miRNAs, DE circRNAs, DE lncRNAs, and lncRNA/circRNA-miRNA-mRNA network were enriched in pathways related to the amino acid, carbohydrate, and glycogen metabolism. Considering the importance of the chitin and cuticle in exoskeleton formation, it can be concluded that the changes in the chitin and cuticle biosynthesis might have caused the eyestalk abnormality in hybrid crabs. These findings can lay the solid foundation for a better understanding of the important roles of chitin and cuticle related genes and the development of hybridization techniques in crustaceans.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ligang Lv
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jun Song
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ning Zhang
- Qingdao Zhongkehai Recycling Water Aquaculture System Co., Ltd, Qingdao 266071, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
7
|
Associations of Polymorphisms Localized in the 3'UTR Regions of the KRAS, NRAS, MAPK1 Genes with Laryngeal Squamous Cell Carcinoma. Genes (Basel) 2021; 12:genes12111679. [PMID: 34828284 PMCID: PMC8625477 DOI: 10.3390/genes12111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Genetic variations, localized in the 3′ untranslated region (UTR) in mitogen-activated protein kinase (MAPK) pathway-related genes, may alter the transcription and impact the pathogenesis of laryngeal squamous cell carcinoma (LSCC). The present study investigated the associations of single-nucleotide polymorphisms (SNP), localized in the 3′UTR) of the KRAS, NRAS, and MAPK1 genes with LSCC risk and clinicopathological features. Methods: Genomic DNA and clinical data were collected from 327 adult men with LSCC. The control group was formed from 333 healthy men. Genotyping of the SNPs was performed using TaqMan SNP genotyping assays. Five KRAS, NRAS, and MAPK1 polymorphisms were analyzed. All studied genotypes were in Hardy–Weinberg equilibrium and had the same allele distribution as the 1000 Genomes project Phase 3 dataset for the European population. Results: Significant associations of the studied SNPs with reduced LSCC risk were observed between NRAS rs14804 major genotype CC. Significant associations of the studied SNPs with clinicopathologic variables were also observed between NRAS rs14804 minor T allele and advanced tumor stage and positive lymph node status. SNP of MAPK1 rs9340 was associated with distant metastasis. Moreover, haplotype analysis of two KRAS SNPs rs712 and rs7973450 revealed that TG haplotype was associated with positive lymph node status in LSCC patients. Conclusions: According to the present study, 3′UTR SNP in the NRAS and MAPK1 genes may contribute to the identifications of patients at higher risk of LSCC lymph node and distant metastasis development.
Collapse
|
8
|
Marinović S, Škrtić A, Catela Ivković T, Poljak M, Kapitanović S. Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma. Hum Cell 2021; 34:1455-1465. [PMID: 34235620 DOI: 10.1007/s13577-021-00576-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor growth. In this study, we investigated the KRAS status in correlation with clinicopathological features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor front (T2). Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage of KRAS-positive tumor cells and a higher intensity of immunohistochemical reaction in T2 than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant allele had significantly higher protein expression of the wild-type KRAS. Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in the regulation of wild-type KRAS protein expression in sporadic CRC.
Collapse
Affiliation(s)
- Sonja Marinović
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anita Škrtić
- Department of Pathology, Clinical Hospital Merkur, Zagreb, Croatia
| | - Tina Catela Ivković
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mirko Poljak
- Department of Surgery, Clinical Hospital Merkur, Zagreb, Croatia
| | - Sanja Kapitanović
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
9
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
10
|
Papanikolaou V, Chrysovergis A, Mastronikolis S, Tsiambas E, Ragos V, Peschos D, Spyropoulou D, Pantos P, Niotis A, Mastronikolis N, Kyrodimos E. Impact of K-Ras Over-expression in Laryngeal Squamous Cell Carcinoma. In Vivo 2021; 35:1611-1615. [PMID: 33910843 DOI: 10.21873/invivo.12418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Oncogene up-regulation combined with suppressor gene down-regulation is a crucial genetic combination that promotes cell neoplastic phenotype and progressively malignant transformation in solid malignancies, including laryngeal squamous cell carcinoma (LSCC). Among oncogenes, the Kirsten ras oncogene homolog (K-Ras) is involved in LSCC onset and progression. PATIENTS AND METHODS Sixty (n=60) primary LSCC tissue sections were analyzed by immunohistochemistry (IHC). Digital image analysis (DIA) was also implemented for measuring K-Ras protein expression levels. RESULTS High K-Ras protein expression levels were observed in 20/60 (33.3%) LSCC tissue sections, whereas the rest of the cases (n=40; 66.7%) demonstrated low expression. Overall K-Ras expression was borderline significantly associated to the grade of the examined malignancies (p=0.048), whereas no other strong statistical correlations were identified. A progressive K-Ras overexpression was observed in all grades of the examined cases. CONCLUSION K-Ras over expression is correlated to a progressive dedifferentiation in LSCC.
Collapse
Affiliation(s)
| | | | | | | | - Vasileios Ragos
- Department of Maxillofacial Surgery, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Pavlos Pantos
- 1 ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| | | | | | - Efthymios Kyrodimos
- 1 ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
11
|
Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules 2021; 11:844. [PMID: 34198889 PMCID: PMC8228566 DOI: 10.3390/biom11060844] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.
Collapse
Affiliation(s)
| | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, al. Kościuszki 4, 90-419 Łódź, Poland; (J.K.); (M.M.)
| |
Collapse
|
12
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
13
|
Carron J, Torricelli C, Silva JK, Queiroz GSR, Ortega MM, Lima CSP, Lourenço GJ. microRNAs deregulation in head and neck squamous cell carcinoma. Head Neck 2020; 43:645-667. [PMID: 33159410 DOI: 10.1002/hed.26533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck (HN) squamous cell carcinoma (SCC) is the eighth most common human cancer worldwide. Besides tobacco and alcohol consumption, genetic and epigenetic alterations play an important role in HNSCC occurrence and progression. microRNAs (miRNAs) are small noncoding RNAs that regulate cell cycle, proliferation, development, differentiation, and apoptosis by interfering in gene expression. Expression profiling of miRNAs showed that some miRNAs are upregulated or downregulated in tumor cells when compared with the normal cells. The present review focuses on the role of miRNAs deregulations in HNSCC, enrolled in risk, development, outcome, and therapy sensitivity. Moreover, the influence of single nucleotide variants in miRNAs target sites, miRNAs seed sites, and miRNAs-processing genes in HNSCC was also revised. Due to its potential for cancer diagnosis, progression, and as a therapeutic target, miRNAs may bring new perspectives in HNSCC understanding and therapy, especially for those patients with no or insufficient treatment options.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Janet K Silva
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriela S R Queiroz
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Manoela M Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
| | - Carmen S P Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Farokhzad N, Hosseini SM, Edalat H, Sadeghi M. Association of Rs61764370 polymorphism within let-7 microRNA-binding site with lung cancer in Iranian population. Afr Health Sci 2020; 20:1299-1303. [PMID: 33402978 PMCID: PMC7751538 DOI: 10.4314/ahs.v20i3.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Polymorphisms within miRNAs binding sites are associated with miRNAs function. The aim of this study was to investigate the relationship between rs61764370 polymorphism within let-7 miRNA binding site in KRAS gene and the risk of lung cancer in Iranian population. METHODS This case-control study was conducted with 100 lung cancer patients and 100 healthy persons. The rs61764370 polymorphism was analyzed using PCR-RFLP technique and direct sequencing. RESULTS We found a significant relationship between rs61764370 (T / G) polymorphism and lung cancer risk, the GT genotype (OR: 6.25; 95% CI = 2.605-15.00; P= 0.000) and G allele (OR: 5.25; 95% CI = 2.259-12.208; P= 0.000) were significantly associated with an increased risk of lung cancer. CONCLUSION According to our findings, there is a significant relationship between the KRAS rs61764370 polymorphism and lung cancer risk in Iranian population and this polymorphism may be used as a marker in detection of lung cancer in the future.
Collapse
Affiliation(s)
- Neda Farokhzad
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Houri Edalat
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Barlak N, Capik O, Sanli F, Karatas OF. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol 2020; 109:104950. [PMID: 32828020 DOI: 10.1016/j.oraloncology.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer (OC), which is the most common form of head and neck cancers, has one of the lowest (~50%) overall 5-year survival rates. The main reasons for this high mortality rate are diagnosis of OC in advanced stages in most patients and spread to distant organs via lymph node metastasis. Many studies have shown that a small population of cells within the tumor plays vital roles in the initiation, progression, and metastasis of the tumor, resistance to chemotherapeutic agents, and recurrence. These cells, identified as cancer stem cells (CSCs), are the main reasons for the failure of current treatment modalities. Deregulated expressions of microRNAs are closely related to tumor prognosis, metastasis and drug resistance. In addition, microRNAs play important roles in regulating the functions of CSCs. Until now, the roles of microRNAs in the acquisition and maintenance of OC stemness have not been elucidated in detail yet. Here in this review, we summarized significant findings and the latest literature to better understand the involvement of CSCs in association with dysregulated microRNAs in oral carcinogenesis. Possible roles of these microRNAs in acquisition and maintenance of CSCs features during OC pathogenesis were summarized.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
16
|
Zhou M, Jia X, Wan H, Wang S, Zhang X, Zhang Z, Wang Y. miR-9 and miR-263 Regulate the Key Genes of the ERK Pathway in the Ovary of Mud Crab Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:594-606. [PMID: 32651722 DOI: 10.1007/s10126-020-09981-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Mud crab Scylla paramamosain is one of the most important economic crabs in China. The molecular regulatory mechanism of ovarian development has received considerable attention in recent years. Some studies found that ERK (extracellular signal-regulated protein kinase) signaling pathway plays an important role in ovarian development and is negatively regulated by microRNAs (miRNAs). However, the study about the regulation of miRNA on the ERK pathway in crustacean's ovary remains unknown. In this study, the target genes of the ERK signaling pathway regulated by selected miRNAs identified from the ovary of mud crab in our previous research were predicted by using bioinformatics tools. The results showed that the ERK2 might be a target gene of miR-9c, miR-263a, and miR-263b; MEK2 may be a target gene of miR-263a; and Rap-1b may be a target gene of miR-9, miR-9c, and miR-263a. Results of in vitro dual-luciferase reporter assay showed that the relative luciferase activities were significantly lower in HEK293T cells co-transfected with the combination of miRNA mimics and pmir-RB-REPORTTM-target gene-3'UTR than those with the combination of mimics NC and pmir-RB-REPORTTM-target gene-3'UTR. In contrast, the relative luciferase activities were significantly higher in HEK293T cells co-transfected with miRNA inhibitor than those with inhibitor NC. To further validate in vitro results, the miRNA reagents were injected into the living female mud crabs, and the expression levels of miRNAs and target genes after the injection were analyzed by quantitative real-time PCR. The in vivo experimental results showed that miRNAs (miR-9c/miR-263a) agomir (enhancers)/antagomir (inhibitors) can enhance/decrease the expression of two miRNAs, respectively, and the expression of target genes in the ovary was declined/increased after injection of agomir/antagomir reagent. In conclusion, miR-9/miR-263 can negatively regulate the expression of the ERK pathway genes (ERK2, MEK2, and Rap-1b) in the ovary of mud crab.
Collapse
Affiliation(s)
- Mingcan Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Haifu Wan
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shuhong Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
17
|
Lepore S, Lettini G, Condelli V, Sisinni L, Piscazzi A, Simeon V, Zoppoli P, Pedicillo MC, Natalicchio MI, Pietrafesa M, Landriscina M. Comparative Gene Expression Profiling of Tobacco-Associated HPV-Positive versus Negative Oral Squamous Carcinoma Cell Lines. Int J Med Sci 2020; 17:112-124. [PMID: 31929745 PMCID: PMC6945558 DOI: 10.7150/ijms.35133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background: HPV-positive oral squamous cell carcinomas (OSCCs) are specific biological and clinical entities, characterized by a more favorable prognosis compared to HPV-negative OSCCs and occurring generally in non-smoking and non-drinking younger individuals. However, poor information is available on the molecular and the clinical behavior of HPV-positive oral cancers occurring in smoking/drinking subjects. Thus, this study was designed to compare, at molecular level, two OSCC cell lines, both derived from drinking and smoking individuals and differing for presence/absence of HPV infection. Methods: HPV-negative UPCI-SCC-131 and HPV16-positive UPCI-SCC-154 cell lines were compared by whole genome gene expression profiling and subsequently studied for activation of Wnt/βCatenin signaling pathway by the expression of several Wnt-target genes, βCatenin intracellular localization, stem cell features and miRNA let-7e. Gene expression data were validated in head and neck squamous cell carcinoma (HNSCC) public datasets. Results: Gene expression analysis identified Wnt/βCatenin pathway as the unique signaling pathway more active in HPV-negative compared to HPV-positive OSCC cells and this observation was confirmed upon evaluation of several Wnt-target genes (i.e., Cyclin D1, Cdh1, Cdkn2a, Cd44, Axin2, c-Myc and Tcf1). Interestingly, HPV-negative OSCC cells showed higher levels of total βCatenin and its active form, increase of its nuclear accumulation and more prominent stem cell traits. Furthermore, miRNA let-7e was identified as potential upstream regulator responsible for the downregulation of Wnt/βCatenin signaling cascade since its silencing in UPCI-SCC-154 cell resulted in upregulation of Wnt-target genes. Finally, the analysis of two independent gene expression public datasets of human HNSCC cell lines and tumors confirmed that Wnt/βCatenin pathway is more active in HPV-negative compared to HPV-positive tumors derived from individuals with smoking habit. Conclusions: These data suggest that lack of HPV infection is associated with more prominent activation of Wnt/βCatenin signaling pathway and gain of stem-like traits in tobacco-related OSCCs.
Collapse
Affiliation(s)
- Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
- Medical Statistics Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Maria Carmela Pedicillo
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine; University of Foggia, Italy
| | | | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
18
|
Çintesun FNİ, Kerimoğlu ÖS, Çintesun E, Nergiz S, Acar H, Çelik Ç. The relationship between KRAS LCS6 polymorphism and endometrium cancer. J OBSTET GYNAECOL 2019; 40:988-993. [PMID: 31790621 DOI: 10.1080/01443615.2019.1678576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between KRAS LCS6 mutation and endometrial cancer (EC). The study included 105 patients who had hysterectomy for benign reasons and 99 EC patients. The patients with Type 1 EC were classified according to histological properties, cancer stage, grade, tumour dimension, myometrial invasion (MMI), lymphovascular invasion (LVI), cytology, and number of positive lymph nodes. KRAS LCS6 mutation was examined in blood samples taken from all patients in both groups. No statistically significant difference was determined between the EC patients and the control group in demographic features. Weight and the Body Mass Index (BMI) values were higher in EC group (p < .001). While the incidence of this polymorphism is 5.8% throughout the world, the polymorphism rate was found to be 16.2% in the EC group and 12.4% in the control group, with no statistically significant difference determined (p > .05). Despite the higher rate of LCS6 polymorphism incidence in EC patients in this study conducted on a relatively large sample, there was not found to be a statistically significant difference in comparison with the control group. In addition, the presence of LCS6 polymorphism was not determined to have an effect on EC histopathological characteristics.Impact statementWhat is already known on this subject? Endometrial cancer (EC) is a genital system cancer which is one of the most widespread gynecological cancers seen in the USA and other developed countries, In EC, the most frequently seen gene mutations are PTEN tumour suppressor gene, KRAS, β1 catenin, BCL-2, CTNNB and P53 mutations. KRAS LCS6(let-7 miRNA binding region polymorphism) polymorphism has a worldwide incidence of 5.8% (Chin et al. 2008).There are studies shown that KRAS LCS6 polymorphism has an effect on developing EC (Lee et al. 2014), ovarian cancer(Ratner et al. 2010)and endometriosis in women (Grechukhina et al. 2012).What do the results of this study add? In our study, LCS6 located on KRAS 3'-UTR was found at the rate of 16.2% in Type 1 EC patients. This increase is noticeable when it is considered that the incidence of this polymorphism is 5.8% in the general population. The results of the current study supports the preliminary findings of Lee et al.What are the implications of these findings for clinical practice and/or further research? These new genetic markers could help to develop gene-targeted therapies, identify genetic basis of the disease and the factors that could affect the EC prognosis.
Collapse
Affiliation(s)
- Feyza Nur İncesu Çintesun
- Department of Obstetrics and Gynecology, University of Health Sciences Konya Training and Research Hospital, Konya, Turkey
| | | | - Ersin Çintesun
- Department of Obstetrics and Gynecology, Selçuk University Medicine Faculty, Konya, Turkey
| | - Süleyman Nergiz
- Department of Genetics, Selçuk University Medicine Faculty, Konya, Turkey
| | - Hasan Acar
- Department of Genetics, Selçuk University Medicine Faculty, Konya, Turkey
| | - Çetin Çelik
- Department of Obstetrics and Gynecology, Selçuk University Medicine Faculty, Konya, Turkey
| |
Collapse
|
19
|
Liu X, Yang G, Huang J, Chai L, Liu X, Dai Q, Yang Z. KRAS SNPs are related to colorectal cancer susceptibility and survival in Chinese people. Biomark Med 2019; 14:13-22. [PMID: 31729889 DOI: 10.2217/bmm-2019-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: KRAS SNPs may increase KRAS transcription and KRAS levels. SNPs of KRAS 3'UTR can affect carcinoma risk and prognosis. Materials & methods: The rs8720 and rs7960917 in KRAS 3'UTR for colorectal carcinoma (CRC) risk and survival were investigated in a case-control study. Association between SNPs and CRC risk, survival analysis were analyzed by an unconditional logistic regression model, log-rank test, Kaplan-Meier estimation, Cox regression model and one-way analysis of variance. Results & conclusion: The genotype CT of rs8720 was significantly increased risk of CRC, decreased overall survival and event-free survival, and KRAS mRNA and protein expressions were significantly increased in individuals with rs8720 CT, TT genotype. rs8720 may be an important factor in CRC development and prognosis.
Collapse
Affiliation(s)
- XiuLan Liu
- Department of Pathology, Second People's Hospital of Neijiang, Neijiang, 641100 Sichuan, PR China
| | - Guangji Yang
- Department of Gynecology, First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, PR China
| | - Juan Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, PR China
| | - Li Chai
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, PR China
| | - Xun Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, PR China
| | - Qiong Dai
- Department of Human Anatomy, Southwest Medical University, Luzhou, 646000 Sichuan, PR China
| | - ZhiHui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, PR China
| |
Collapse
|
20
|
Mosallaei M, Simonian M, Esmaeilzadeh E, Bagheri H, Miraghajani M, Salehi AR, Mehrzad V, Salehi R. Single nucleotide polymorphism rs10889677 in miRNAs Let-7e and Let-7f binding site of IL23R gene is a strong colorectal cancer determinant: Report and meta-analysis. Cancer Genet 2019; 239:46-53. [PMID: 31546198 DOI: 10.1016/j.cancergen.2019.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/11/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the recognition sites of microRNAs (miRNAs), located at 3' untranslated region (UTR) of mRNAs, interfere with posttranslational gene regulation. Deregulation of genes may contribute to some disease susceptibility including colorectal cancer (CRC). In the present study, in a case-control setup, 167 CRC patients and 161 control subjects were studied for allele and genotype frequency of rs10889677 polymorphism in miRNAs Let-7e and Let-7f binding sites at 3' UTR of IL23R gene using PCR-RFLP assay. Also, related articles were retrieved from MEDLINE, Cochrane review, Google Scholar and Scopus databases for meta-analysis study. According to our results, AA genotype of SNP rs10889677 was significantly correlated with increased risk of CRC (OR = 3.10; 95% CI [1.86-5.18]; P: < 0.001). In a meta-analysis on 10 risk estimates for the CC versus AA genotype, we found an inverse association between CC SNPs and risk of all cancer (OR = 0.59; 95% CI [0.49-0.71]; P < 0.001). In conclusion, our results demonstrate that rs10889677 polymorphism is significantly associated with CRC risk.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Miganoosh Simonian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emran Esmaeilzadeh
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hadi Bagheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Mehrzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran.
| |
Collapse
|
21
|
Liu A, Zhang W, Zhao T, Xiao M, Mei Q, Zhu H. A single nuclear polymorphism in let-7g binding site affects the doubling time of thyroid nodule by regulating KRAS-induced cell proliferation. J Cell Physiol 2019; 234:23437-23447. [PMID: 31152438 DOI: 10.1002/jcp.28912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
As an indicator for the malignancy of thyroid nodules (TN), the doubling time of TN was studied in this study to evaluate the effect of rs712 polymorphism on the progression of TN. In addition, we aimed to study the potential molecular mechanisms underlying the pathological effect of rs712 polymorphism upon TN. A Taqman method was used to genotype the patients according to their rs712 polymorphism. Real-time polymerase chain reaction, western blot, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay was conducted to study the correlation between KRAS expression and the pathological effect of rs712 polymorphism. In-silicon analysis and luciferase assay were utilized to establish the regulatory relationship between let-7g and KRAS. KRAS messenger RNA (mRNA)/protein levels in the GG group were upregulated with a decreased apoptosis index. KRAS mRNA was validated to be a virtual target of let-7g. In addition, the mRNA/protein level of KRAS as well as cell proliferation index was decreased in primary thyroid cancer cells genotyped as TT/TG and transfected with KRAS small interfering RNA (siRNA)/let-7g precursors. The cell apoptosis index was evidently elevated in the KRAS siRNA/let-7g precursors group compared with that in the scramble controls. Moreover, KRAS mRNA/protein only showed slight reduction when GG-genotyped primary thyroid cancer cells were transfected by let-7g precursors. Additionally, let-7g precursors exhibited no significant effect on cell proliferation index or cell apoptosis in GG cells. Rs712 polymorphism T>G in the 3'-untranslated region of KRAS interrupts the interactions between let-7g and KRAS mRNA, leading to a higher cell proliferation index and reduced doubling time of TN.
Collapse
Affiliation(s)
- Ailin Liu
- Department of Endocrinology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Wanli Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhao
- Department of Endocrinology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Ming Xiao
- Department of Geratology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Qijian Mei
- Department of Geratology, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Hui Zhu
- Department of Geratology, General Hospital of the Yangtze River Shipping, Wuhan, China
| |
Collapse
|
22
|
Jung SY, Malhotra P, Nguyen KC, Salzman D, Qi Y, Pak EH, King J, Vlashi E, Ann D, Weidhaas JB. The KRAS-variant and its impact on normal breast epithelial cell biology. Cell Death Differ 2019; 26:2568-2576. [PMID: 30932013 DOI: 10.1038/s41418-019-0320-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 01/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miRNA)-binding site variants in 3' untranslated regions (3'UTRs) are a novel class of germ-line, functional mutations, which are now recognized as powerful biomarkers of human cancer risk and biology. The first mutation discovered in this class is the KRAS-variant, a let-7-binding site mutation in the 3'UTR of the KRAS oncogene. The KRAS-variant predicts increased cancer risk for certain populations, is a predictive biomarker of cancer treatment response across cancer types, leads to conserved tumor biology and elevated AKT signaling in KRAS-variant patient tumors, and was recently found to predict elevated TGF-β and immunosuppression in cancer patients. Based on the functional biology of the KRAS-variant in cancer patients, here we chose to investigate altered normal cellular biology in the presence of the KRAS-variant, through interrogation of an isogenic normal breast epithelial cell line model with and without the KRAS-variant. We find that KRAS-variant normal breast epithelial cells exhibit a mesenchymal phenotype, which appears to be due to numerous molecular changes, including miRNA dysregulation and autocrine pathway alterations, including elevated TGF-β, resulting in ZEB and SNAIL upregulation. Our findings support the hypothesis that the KRAS-variant has a fundamental biological impact on normal cellular biology, that is conserved in these patients when they develop cancer.
Collapse
Affiliation(s)
- Song-Yi Jung
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Poonam Malhotra
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Kiana C Nguyen
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - David Salzman
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, 91010, USA
| | - Ethan H Pak
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Joshua King
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Erina Vlashi
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, 91010, USA
| | - Joanne B Weidhaas
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Fu W, Zhuo Z, Hua RX, Fu K, Jia W, Zhu J, Zhang J, Cheng J, Zhou H, Xia H, He J, Liu G. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study. Aging (Albany NY) 2019; 11:1551-1563. [PMID: 30860980 PMCID: PMC6428095 DOI: 10.18632/aging.101855] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Wilms tumor is a type of pediatric solid tumor that arises partly due to somatic and germline mutations. Single-nucleotide polymorphisms (SNPs) in the RAS gene reportedly modify the risk for several types of human malignancies. We conducted a multicenter study to investigate whether RAS gene variants predispose individuals to Wilms tumor. Four SNPs in RAS were genotyped in 355 Wilms tumor cases and 1070 controls. The SNPs included rs12587 G>T, rs7973450 A>G and rs7312175 G>A in KRAS, and rs2273267 A>T in NRAS. Individuals harboring the rs12587 GT genotype were more likely to develop Wilms tumor than those carrying the GG genotype (adjusted odds ratio [OR]=1.30, 95% confidence interval [CI]=1.004-1.68, P=0.046). However, the other three SNPs seemed not to influence the risk for Wilms tumor. Compared to individuals without a risk genotype, those harboring one to three KRAS risk genotypes had an adjusted OR of 1.28 for developing Wilms tumor (95% CI=1.002-1.64, P=0.048). Stratification analysis revealed that rs12587 GT/TT was associated with Wilms tumor risk in children >18 months old (adjusted OR=1.39, 95% CI=1.02-1.89, P=0.037). Our findings indicate that the rs12587 G>T polymorphism in KRAS is associated with increased Wilms tumor susceptibility.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Equal contribution
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Equal contribution
| | - Kai Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
24
|
Bastit V, Bon-Mardion N, Picquenot JM, Rainville V, Moldovan C, François A, Loeb A, Thureau S, Manu D, Jardin F, Marie JP, Di Fiore F, Clatot F. Benefit of cetuximab addition to a platinum-fluorouracil-based chemotherapy according to KRAS-LCS6 variant in an unselected population of recurrent and/or metastatic head and neck cancers. Eur Arch Otorhinolaryngol 2018; 276:541-550. [PMID: 30523411 DOI: 10.1007/s00405-018-5235-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate the benefit of cetuximab (Cx) addition to platinum-based and 5-fluorouracil chemotherapy (PFU) in unselected recurrent and/or metastatic head and neck cancer patients (R/MHNC) according to KRAS-LCS6 variant status. METHODS All patients who received at least two PFU ± Cx cycles from 2004 to 2014 were retrospectively included into to two distinct study periods according to Cx implementation: patients treated by PFU alone before 2009 and those treated by PFU + Cx from 2009. Primary objective was to evaluate the progression-free survival (PFS) between the two groups. Secondary objectives were to analyze the overall survival (OS) between the two groups and the prognostic impact of KRAS-LCS6 variant. Factors associated with survival were determined by a Cox multivariate analysis including age, WHO performance status (PS), type of treatment, KRAS-LCS6 variant, Charlson's score and p16 status. RESULTS Overall, 134 patients were included: 59 (44%) in PFU group and 75 (56%) in PFU + Cx group. Baseline characteristics were well balanced including 30% of patients with 2-3 PS. Median PFS was significantly improved in PFU + Cx group compared to PFU group (6.1 vs 4.4 months, respectively, HR 0.68, p = 0.02) and with a trend for better OS. A KRAS-LCS6 variant was found in 27 (25%) of samples without prognostic impact neither in whole population nor according to treatment. In multivariate analysis, addition of Cx to PFU was the only factor significantly associated with a better PFS (p = 0.01, HR 0.6). CONCLUSION Our results suggest that PFU + Cx combination may be effective in unselected population of R/MHNC regardless the KRAS-LCS6 variant status.
Collapse
Affiliation(s)
- Vianney Bastit
- Department of Head and Neck Surgery, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France. .,Department of Head and Neck Surgery, Rouen University Hospital, rue de Germont, 76000, Rouen, France. .,Department of ENT and Head and Neck Surgery, Centre François Baclesse, 3 rue du Général Harris, 14000, Caen, France.
| | - Nicolas Bon-Mardion
- Department of Head and Neck Surgery, Rouen University Hospital, rue de Germont, 76000, Rouen, France
| | - Jean-Michel Picquenot
- Department of Biopathology, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France.,IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, UNIROUEN, Inserm U1245, rue de Germont, Normandie Université, 76000, Rouen, France
| | - Vinciane Rainville
- IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, UNIROUEN, Inserm U1245, rue de Germont, Normandie Université, 76000, Rouen, France
| | - Cristian Moldovan
- Department of Medical Oncology, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| | - Arnaud François
- Department of Biopathology, Rouen University Hospital, rue de Germont, 76000, Rouen, France
| | - Agnès Loeb
- Department of Biomedical Informatics, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| | - Sébastien Thureau
- Department of Radiation therapy, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| | - Dorel Manu
- Department of Head and Neck Surgery, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| | - Fabrice Jardin
- IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, UNIROUEN, Inserm U1245, rue de Germont, Normandie Université, 76000, Rouen, France
| | - Jean-Paul Marie
- Department of Head and Neck Surgery, Rouen University Hospital, rue de Germont, 76000, Rouen, France
| | - Fréderic Di Fiore
- IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, UNIROUEN, Inserm U1245, rue de Germont, Normandie Université, 76000, Rouen, France.,Department of Medical Oncology, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| | - Florian Clatot
- IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, UNIROUEN, Inserm U1245, rue de Germont, Normandie Université, 76000, Rouen, France.,Department of Medical Oncology, Henri Becquerel Centre, rue d'Amiens, 76000, Rouen, France
| |
Collapse
|
25
|
Zhou M, Jia X, Wan H, Wang S, Zhang X, Zhang Z, Wang Y. miR-34 regulates reproduction by inhibiting the expression of MIH, CHH, EcR, and FAMeT genes in mud crab Scylla paramamosain. Mol Reprod Dev 2018; 86:122-131. [PMID: 30286264 DOI: 10.1002/mrd.23063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Mud crab Scylla paramamosain is a commercially important species widely cultured in China. It is well known that the eyestalk regulates reproductive activities in crustaceans. In our previous research, we found that the miR-34 expression level in male eyestalk was significantly higher than that in females. Thus, we assumed that it may play an important role in regulating reproduction. In this study, we used bioinformatic tools to identify the target genes of miR-34 in eyestalk. Six reproduction-related genes with an intact 3'-untranslated region (UTR), including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), vitellogenesis-inhibiting hormone, red pigment concentrating hormone, ecdysone receptor (EcR), and farnesoic acid methyltransferase (FAMeT) were identified. When the 3'-UTR plasmid vectors of the six genes were cotransfected with miR-34 mimics into 293FT cells, respectively, the luciferase activities of four genes (MIH, CHH, EcR, and FAMeT) were significantly decreased compared with that in the control group; on the contrary, when the six plasmid vectors were cotransfected with the miR-34 inhibitor respectively, the luciferase activities of four genes (MIH, CHH, EcR, and FAMeT) were significantly higher than that in the control group. When agomiR-34 and antagomiR-34 were injected into the eyestalk respectively in vivo, the expression levels of the MIH, CHH, EcR, and FAMeT genes were detected by a quantitative real-time polymerase chain reaction. The results showed that agomiR-34 suppressed the expression of the four genes, whereas antagomiR-34 enhanced their expression. These experimental results confirmed our hypothesis that miR-34 may indirectly regulate reproduction via binding to the 3'-UTRs of MIH, CHH, EcR, and FAMeT genes and suppressing their expression.
Collapse
Affiliation(s)
- Mingcan Zhou
- Fisheries College, Jimei University, Xiamen, China
| | - Xiwei Jia
- Fisheries College, Jimei University, Xiamen, China
| | - Haifu Wan
- Fisheries College, Jimei University, Xiamen, China
| | - Shuhong Wang
- Fisheries College, Jimei University, Xiamen, China
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
26
|
Wilkins OM, Titus AJ, Salas LA, Gui J, Eliot M, Butler RA, Sturgis EM, Li G, Kelsey KT, Christensen BC. MicroRNA-Related Genetic Variants Associated with Survival of Head and Neck Squamous Cell Carcinoma. Cancer Epidemiol Biomarkers Prev 2018; 28:127-136. [PMID: 29880533 DOI: 10.1158/1055-9965.epi-18-0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/23/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is commonly diagnosed at an advanced stage, and prognosis for such patients is poor. There remains a gap in our understanding of genetic variants related with HNSCC prognosis. miRNA-related single nucleotide polymorphisms (miR-SNPs) are a class of genetic variants with gene-regulatory potential. METHODS We used a genome-scale approach and independent patient populations in a two-stage approach to test 40,286 common miR-SNPs for association with HNSCC survival in the discovery population (n = 847), and selected the strongest associations for replication in validation phase cases (n = 1,236). Furthermore, we leveraged miRNA interaction databases and miRNA expression data from The Cancer Genome Atlas, to provide functional insight for the identified and replicated associations. RESULTS Joint population analyses identified novel miR-SNPs associated with overall survival in oral and laryngeal cancers. rs1816158, located within long noncoding RNA MIR100HG, was associated with overall survival in oral cavity cancer (HR, 1.56; 95% confidence interval (CI), 1.21-2.00). In addition, expression of MIR100HG-embedded miRNA, miR-100, was significantly associated with overall survival in an independent cohort of HNSCC cases (HR, 1.25; 95% CI, 1.06-1.49). A SNP in the 3'UTR of SH3BP4 (rs56161233) that overlaps predicted miRNA-binding sites and is predicted to disrupt several miRNA-mRNA interactions was associated with overall survival of laryngeal cancer (HR, 2.57; 95% CI, 1.71-3.86). CONCLUSIONS This work reveals novel miR-SNPs associated with HNSCC survival, and utilizes miRNA-mRNA interaction and expression data to provide functional support for these associations. IMPACT These findings extend our understanding of how genetic variation contributes to HNSCC survival, and may contribute to future prognostic models for improved risk stratification.
Collapse
Affiliation(s)
- Owen M Wilkins
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alexander J Titus
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Rondi A Butler
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
27
|
Di Domenico M, Giovane G, Kouidhi S, Iorio R, Romano M, De Francesco F, Feola A, Siciliano C, Califano L, Giordano A. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers. Cancer Biol Ther 2018; 19:850-857. [PMID: 28362190 DOI: 10.1080/15384047.2017.1310349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.
Collapse
Affiliation(s)
- Marina Di Domenico
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy.,b IRCCS Institute of Women's Health Malzoni Clinic , Avellino , Italy.,c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| | - Giancarlo Giovane
- d Department of Experimental Medicine , Section of Hygiene, Occupational Medicine and Forensic Medicine, University of Campania "Luigi Vanvitelli" , Italy
| | - Soumaya Kouidhi
- e Laboratory BVBGR, LR11ES31, ISBST, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba , Tunis , Tunisia.,f Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis
| | - Rosamaria Iorio
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Maurizio Romano
- g Hepatobiliary and Liver Transplantation Unit, Azienda Ospedaliera , Padova , Italy.,h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Francesco De Francesco
- h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Antonia Feola
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Camilla Siciliano
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Luigi Califano
- i Department of Maxillofacial Surgery , University of Naples "Federico II" , Naples , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA.,j Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
28
|
Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget 2018; 7:38892-38907. [PMID: 26646588 PMCID: PMC5122439 DOI: 10.18632/oncotarget.6476] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/22/2015] [Indexed: 01/17/2023] Open
Abstract
The highly conserved RAS-mitogen activated protein kinase (MAPK) signaling pathway is involved in a wide range of cellular processes including differentiation, proliferation, and survival. Somatic mutations in genes encoding RAS-MAPK components frequently occur in many tumors, making the RAS-MAPK a critical pathway in human cancer. Since the pioneering study reporting that let-7 miRNA acted as tumor suppressor by repressing the RAS oncogene, growing evidence has suggested the importance of miRNAs targeting the RAS-MAPK in oncogenesis. MiRNAs alterations in human cancers may act as a rheostat of the oncogenic RAS signal that is often amplified as cancers progress. However, specific mechanisms leading to miRNAs deregulation and their functional consequences in cancer are far from being fully elucidated. In this review, we provide an experimental-validated map of RAS-MAPK oncomiRs and tumor suppressor miRNAs from transmembrane receptor to downstream ERK proteins. MiRNAs could be further considered as potential genetic biomarkers for diagnosis, prognosis, or therapeutic purpose.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- Unité de Génétique Somatique, Département de Génétique Oncologique, Institut Curie, Paris, France.,INSERM_U830, Institut Curie, Paris, France
| | - Simon Garinet
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
29
|
Cao M, Zheng L, Liu J, Dobleman T, Hu S, Go VLW, Gao G, Xiao GG. MicroRNAs as effective surrogate biomarkers for early diagnosis of oral cancer. Clin Oral Investig 2018; 22:571-581. [PMID: 29299731 DOI: 10.1007/s00784-017-2317-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oral squamous cell carcinomas (OC) are life-threatening diseases emerging as major international health concerns. OBJECTIVE Development of an efficient clinical strategy for early diagnosis of the disease is a key for reducing the death rate. Biomarkers are proven to be an effective approach for clinical diagnosis of cancer. Although mechanisms underlying regulation of oral malignancy are still unclear, microRNAs (miRNAs) as a group of small non-coded RNAs may be developed as the effective biomarkers used for early detection of oral cancer. METHODS A literature search was conducted using the databases of PubMed, Web of Science, and the Cochrane Library. The following search terms were used: miRNAs and oral cancer or oral carcinoma. A critical appraisal of the included studies was performed with upregulated miRNAs and downregulated miRNAs in oral cancer. RESULTS In this review, we summarize the research progress made in miRNAs for diagnosis of oral cancer. The involvement of miRNAs identified in signal transduction pathways in OC, including Ras/MAPK signaling, PI3K/AKT signaling, JAK/STAT signaling, Wnt/β-catenin signaling, Notch signaling, and TGF-β/SMAD signaling pathway. CONCLUSIONS A number of studies demonstrated that miRNAs may be developed as an ideal set of biomarkers used for early diagnosis and prognosis of cancers because of the stability in human peripheral blood and body fluids and availability of non-invasive approaches being developed for clinical utility. CLINICAL RELEVANCE These findings suggest that miRNAs as biomarkers may be useful for diagnosis of OC.
Collapse
Affiliation(s)
- Min Cao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lijuan Zheng
- Geriatric Department of Stomatology, Dalian Stomatology Hospital, Dalian, 116021, China
| | - Jianzhou Liu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Thomas Dobleman
- Genomics and Functional Proteomics Laboratories, Creighton University Medical Center, Omaha, NE, 68131, USA
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Vay Liang W Go
- UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at University of California Los Angeles, 900 Veteran Avenue, Warren Hall 13-146, Los Angeles, CA, 90095-1786, USA
| | - Ge Gao
- Faculty of Laboratory Medicine, Xiangya Medical College of Central South University, Changsha, 410013, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, China. .,Genomics and Functional Proteomics Laboratories, Creighton University Medical Center, Omaha, NE, 68131, USA. .,UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at University of California Los Angeles, 900 Veteran Avenue, Warren Hall 13-146, Los Angeles, CA, 90095-1786, USA.
| |
Collapse
|
30
|
Sun CY, Sun C, Cheng R, Shi S, Han Y, Li XQ, Zhi JX, Li FF, Liu SL. Rs2459976 in ZW10 gene associated with congenital heart diseases in Chinese Han population. Oncotarget 2017; 9:3867-3874. [PMID: 29423089 PMCID: PMC5790506 DOI: 10.18632/oncotarget.23240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Congenital heart diseases (CHD) are a large group of prevalent and complex anatomic malformations of the heart, with the genetic basis remaining largely unknown. Since genes or factors associated with the differentiation of human embryonic stem (HES) cells would affect the development of all embryonic tissues, including cardiac progenitor cells, we postulated their potential roles in CHD. In this study, we focused on ZW10, a kinetochore protein involved in the process of proper chromosome segregation, and conducted comparative studies between CHD patients and normal controls matched in gender and age in Chinese Han populations. We identified three variations in the ZW10 gene, including rs2885987, rs2271261 and rs2459976, which all had high genetic heterozygosity. Association analysis of these genetic variations with CHD showed correlation between rs2459976 and the risk of CHD. We conclude that rs2459976 in the ZW10 gene is associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Chao-Yu Sun
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chi Sun
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Cheng
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Han
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xue-Qi Li
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ji-Xin Zhi
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy and Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
31
|
Yoo SS, Hong MJ, Lee JH, Choi JE, Lee SY, Lee J, Cha SI, Kim CH, Seok Y, Lee E, Cho S, Jheon S, Park JY. Association between polymorphisms in microRNA target sites and survival in early-stage non-small cell lung cancer. Thorac Cancer 2017; 8:682-686. [PMID: 28922562 PMCID: PMC5668488 DOI: 10.1111/1759-7714.12478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
A high‐throughput mapping method of RNA–RNA interactions by crosslinking, ligation, and sequencing of hybrids (CLASH) can not only provide information about canonical but also non‐canonical interactions. We evaluated the associations between variants in microRNA target sites using CLASH data and survival outcomes of 782 early‐stage non‐small cell lung cancer (NSCLC) patients who underwent curative surgical resection. Among the 100 variants studied, two variants showed significant association with survival outcomes. The POLR2A rs2071504 C > T variant was associated with poor overall and disease‐free survival under a dominant model (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.08–1.88; P = 0.01 and HR 1.34, 95% CI 1.08–1.67; P = 0.01, respectively). Patients carrying the NR2F6 rs2288539 TT genotype showed significantly better overall survival than those with the NR2F6 rs2288539 CC or CT genotypes (HR 0.13, 95% CI 0.02–0.90; P = 0.04). These findings suggest that POLR2A rs2071504 C > T and NR2F6 rs2288539 C > T can influence prognosis in early‐stage NSCLC patients.
Collapse
Affiliation(s)
- Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Jeong Hong
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jin Eun Choi
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yangki Seok
- Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Eungbae Lee
- Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Seoul National University, Seoul, South Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Seoul National University, Seoul, South Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
32
|
Abstract
microRNAs (miRNAs) are a small RNA species without protein-coding potential. However, they are key modulators of protein translation. Many studies have linked miRNAs with cancer initiation, progression, diagnosis, and prognosis, and recent studies have also linked them with cancer etiology and susceptibility, especially through single-nucleotide polymorphisms (SNPs). This review discusses some of the recent advances in miRNA-SNP literature-including SNPs in miRNA genes, miRNA target sites, and the processing machinery. In addition, we highlight some emerging areas of interest, including isomiRs and non-3'UTR focused miRNA-binding mechanisms that could provide further novel insight into the relationship between miR-SNPs and cancer. Finally, we note that additional epidemiological and experimental research is needed to close the gap in our understanding of the genotype-phenotype relationship between miRNA-SNPs and cancer.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
33
|
Zhou J, Bi C, Ching YQ, Chooi JY, Lu X, Quah JY, Toh SHM, Chan ZL, Tan TZ, Chong PS, Chng WJ. Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia. J Hematol Oncol 2017; 10:138. [PMID: 28693523 PMCID: PMC5504806 DOI: 10.1186/s13045-017-0507-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Current conventional chemotherapy for acute myeloid leukemia (AML) can achieve remission in over 70% of patients, but a majority of them will relapse within 5 years despite continued treatment. The relapse is postulated to be due to leukemia stem cells (LSCs), which are different from normal hematopoietic stem cells (HSCs). LIN28B is microRNA regulator and stem cell reprogramming factor. Overexpression of LIN28B has been associated with advance human malignancies and cancer stem cells (CSCs), including AML. However, the molecular mechanism by which LIN28B contributes to the development of AML remains largely elusive. METHODS We modulated LIN28B expression in AML and non-leukemic cells and investigated functional consequences in cell proliferation, cell cycle, and colony-forming assays. We performed a microarray-based analysis for LIN28B-silencing cells and interrogated gene expression data with different bioinformatic tools. AML mouse xenograft model was used to examine the in vivo function of LIN28B. RESULTS We demonstrated that targeting LIN28B in AML cells resulted in cell cycle arrest, inhibition of cell proliferation and colony formation, which was induced by de-repression of let-7a miRNA. On the other hand, overexpression of LIN28B promoted cell proliferation. Data point to a mechanism where that inhibition of LIN28B induces metabolic changes in AML cells. IGF2BP1 was confirmed to be a novel downstream target of LIN28B via let-7 miRNA in AML. Notably, ectopic expression of LIN28B increased tumorigenicity, while silencing LIN28B led to slow tumor growth in vivo. CONCLUSIONS In sum, these results uncover a novel mechanism of an important regulatory signaling, LIN28B/let-7/IGF2BP1, in leukemogenesis and provide a rationale to target this pathway as effective therapeutic strategy.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Republic of Singapore
| | - Chonglei Bi
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Republic of Singapore
| | - Xiao Lu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Jessie Yiying Quah
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Zit-Liang Chan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Phyllis Sy Chong
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Republic of Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Republic of Singapore. .,Department of Hematology-Oncology, National University Cancer institute of Singapore, The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| |
Collapse
|
34
|
Kakizaki T, Hatakeyama H, Nakamaru Y, Takagi D, Mizumachi T, Sakashita T, Kano S, Homma A, Fukuda S. Role of microRNA-296-3p in the malignant transformation of sinonasal inverted papilloma. Oncol Lett 2017; 14:987-992. [PMID: 28693263 DOI: 10.3892/ol.2017.6193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Inverted papilloma (IP) is a benign tumor occurring in the nasal cavity and paranasal sinuses. It is reported that 5-15% of IPs undergo malignant transformation into squamous cell carcinoma (SCC), and the role of microRNAs (miRNA/miR) in this process remains to be elucidated. In the present study, whole miRNA profiles using samples of IP and SCC were investigated, in order to detect the function of miRNA in the carcinogenesis of IP. Samples from IPs (n=5) and SCC lesions (n=5), which arose from IPs, were used for miRNA analysis. A total of 200 miRNAs exhibited a >2-fold differential expression between IP and SCC. miR-296-3p was markedly upregulated in SCC with a 23-fold difference. Computational analysis indicated that miR-296-3p targeted PTEN, which regulates the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and PTEN is involved in the carcinogenesis of SCC. miR-296-3p directly regulated PTEN expression in head and neck cancer cells, with PTEN protein levels decreased in 4/19 the SCCs (21.0%), as compared with those in the IPs (76.4%). Positive p21 staining was observed in 64.7% of IPs; this was a significantly increased rate compared with that for SCCs (26.3%, P=0.0086). The results of the present study indicated that there were marked changes in the miRNA expression signature during the malignant transition. miR-296-3p may serve an important role in the malignant transformation of IPs via the regulation of PTEN, combined with the subsequent inhibition of the PI3K/Akt signaling pathway, and may be a novel agent for cancer prevention.
Collapse
Affiliation(s)
- Tomohiko Kakizaki
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiromitsu Hatakeyama
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Dai Takagi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takatsugu Mizumachi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tomohiro Sakashita
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
35
|
Weidhaas JB, Harris J, Schaue D, Chen AM, Chin R, Axelrod R, El-Naggar AK, Singh AK, Galloway TJ, Raben D, Wang D, Matthiesen C, Avizonis VN, Manon RR, Yumen O, Nguyen-Tan PF, Trotti A, Skinner H, Zhang Q, Ferris RL, Sidransky D, Chung CH. The KRAS-Variant and Cetuximab Response in Head and Neck Squamous Cell Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 2017; 3:483-491. [PMID: 28006059 DOI: 10.1001/jamaoncol.2016.5478] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Importance There is a significant need to find biomarkers of response to radiotherapy and cetuximab in locally advanced head and neck squamous cell carcinoma (HNSCC) and biomarkers that predict altered immunity, thereby enabling personalized treatment. Objectives To examine whether the Kirsten rat sarcoma viral oncogene homolog (KRAS)-variant, a germline mutation in a microRNA-binding site in KRAS, is a predictive biomarker of cetuximab response and altered immunity in the setting of radiotherapy and cisplatin treatment and to evaluate the interaction of the KRAS-variant with p16 status and blood-based transforming growth factor β1 (TGF-β1). Design, Setting, and Participants A total of 891 patients with advanced HNSCC from a phase 3 trial of cisplatin plus radiotherapy with or without cetuximab (NRG Oncology RTOG 0522) were included in this study, and 413 patients with available samples were genotyped for the KRAS-variant. Genomic DNA was tested for the KRAS-variant in a CLIA-certified laboratory. Correlation of the KRAS-variant, p16 positivity, outcome, and TGF-β1 levels was evaluated. Hazard ratios (HRs) were estimated with the Cox proportional hazards model. Main Outcomes and Measures The correlation of KRAS-variant status with cetuximab response and outcome, p16 status, and plasma TGF-β1 levels was tested. Results Of 891 patients eligible for protocol analyses (786 male [88.2%], 105 [11.2%] female, 810 white [90.9%], 81 nonwhite [9.1%]), 413 had biological samples for KRAS-variant testing, and 376 had plasma samples for TGF-β1 measurement. Seventy patients (16.9%) had the KRAS-variant. Overall, for patients with the KRAS-variant, cetuximab improved both progression-free survival (PFS) for the first year (HR, 0.31; 95% CI, 0.10-0.94; P = .04) and overall survival (OS) in years 1 to 2 (HR, 0.19; 95% CI, 0.04-0.86; P = .03). There was a significant interaction of the KRAS-variant with p16 status for PFS in patients treated without cetuximab. The p16-positive patients with the KRAS-variant treated without cetuximab had worse PFS than patients without the KRAS-variant (HR, 2.59; 95% CI, 0.91-7.33; P = .07). There was a significant 3-way interaction among the KRAS-variant, p16 status, and treatment for OS (HR, for KRAS-variant, cetuximab and p16 positive, 0.22; 95% CI, 0.03-1.66; HR for KRAS-variant, cetuximab and p16 negative, 1.43; 95% CI, 0.48-4.26; HR for KRAS-variant, no cetuximab and p16 positive, 2.48; 95% CI, 0.64-9.65; and HR for KRAS-variant, no cetuximab and p16 negative, 0.61; 95% CI, 0.23-1.59; P = .02). Patients with the KRAS-variant had significantly elevated TGF-β1 plasma levels (median, 23 376.49 vs 18 476.52 pg/mL; P = .03) and worse treatment-related toxic effects. Conclusions and Relevance Patients with the KRAS-variant with HNSCC significantly benefit from the addition of cetuximab to radiotherapy and cisplatin, and there is a significant interaction between the KRAS-variant and p16 status. Elevated TGF-β1 levels in patients with the KRAS-variant suggests that cetuximab may help these patients by overcoming TGF-β1-induced suppression of antitumor immunity. Trial Registration clinicaltrials.gov Identifier: NCT00265941.
Collapse
Affiliation(s)
- Joanne B Weidhaas
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Jonathan Harris
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Allen M Chen
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Robert Chin
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Rita Axelrod
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adel K El-Naggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | | | | | - David Raben
- Department of Radiation Oncology, University of Colorado at Denver, Aurora
| | - Dian Wang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee
| | - Chance Matthiesen
- Department of Radiation Oncology, Oklahoma University Health Sciences Center, Oklahoma City
| | - Vilija N Avizonis
- Department of Radiation Oncology, Intermountain Medical Center, Salt Lake City, Utah
| | - Rafael R Manon
- University of Florida Health Cancer Center, Orlando Health, Orlando
| | - Omar Yumen
- Department of Radiation Oncology, Geisinger Medical Center CCOP, Danville, Pennsylvania
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, Canada
| | - Andy Trotti
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Heath Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Qiang Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Robert L Ferris
- Cancer Immunology Program and Tumor Microvenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
36
|
Yu SN, Ma YH, Zhao WG, Jin XL, Yang HY, Liu PP, Chen J. KRAS-related noncoding RNAs in pancreatic ductal adenocarcinoma. Chronic Dis Transl Med 2016; 2:215-222. [PMID: 29063045 PMCID: PMC5643763 DOI: 10.1016/j.cdtm.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor overall prognosis. However, curative resection during the early stages of the disease can greatly improve survival rates, highlighting the importance of early screening and detection. Studies of noncoding RNAs, primarily microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), provide important insights into strategies for the early detection of KRAS-driven PDAC. Here, we summarize our studies and review current reports on research investigating KRAS-related miRNAs and lncRNAs, emphasizing their aberrant expression, mechanisms, carcinogenic effects, and prognostic and predictive capacities in PDAC.
Collapse
Affiliation(s)
- Shuang-Ni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
| | - Yi-Hui Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wu-Gan Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiang-Lan Jin
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hai-Yan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ping-Ping Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
- Corresponding author.
| |
Collapse
|
37
|
Epidermal growth factor receptor (EGFR) pathway polymorphisms as predictive markers of cetuximab toxicity in locally advanced head and neck squamous cell carcinoma (HNSCC) in a Spanish population. Oral Oncol 2016; 63:38-43. [DOI: 10.1016/j.oraloncology.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022]
|
38
|
Yuan Y, Sturgis EM, Zhu L, Lu M, Li Y, Wei Q, Li G. A functional variant at the miRNA binding site in E2F1 gene is associated with risk and tumor HPV16 status of oropharynx squamous cell carcinoma. Mol Carcinog 2016; 56:1100-1106. [PMID: 27677255 DOI: 10.1002/mc.22576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) activates E2F1-driven transcription via the E7-RB1-E2F pathway. Genetic polymorphisms in the 3' untranslated region (UTR) targeted by miRNAs can affect the regulation of target genes and individual cancer risk. Thus, we hypothesized that a polymorphism at the 3'UTR miRNA binding site of E2F1 gene (rs3213180) was associated with risk of oral squamous cell carcinoma (OSCC) and tumor HPV status of oropharynx squamous cell carcinoma (OPSCC). We determined the E2F1rs3213180 polymorphism and HPV16 L1 serology of 325 OSCC patients and 335 controls, and tumor HPV16 status of 552 OPSCC. Logistic regression models were used to calculate associations of E2F1rs3213180 polymorphism with risk of HPV-associated OSCC and tumor HPV status of OPSCC. The risk of HPV-associated OSCC was modified by the E2F1rs3213180 polymorphism. Patients with both HPV seropositivity and the Ins/Del or Ins/Ins genotype of E2F1rs3213180 had the highest risk of OSCC, while the lowest risk was detected in patients with HPV seronegativity and the Del/Del genotype. A similar and more prominent effect was detected in OPSCC, but not in oral cavity squamous cell carcinoma (OCSCC) patients. Notably, that effect trend was pronounced in never-smokers and never-drinkers. Furthermore, the patients with the E2F1rs3213180 Ins/Del or Ins/Ins genotype were 2.9 times more likely to have HPV-positive tumors than those with the Del/Del genotype. Our results suggest that the E2F1rs3213180 polymorphism may influence susceptibility to HPV-associated OSCC, particularly for OPSCC, never-smokers and never-drinkers, but not for patients with OCSCC. Additional larger population and functional studies are warranted to confirm our findings. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erich M Sturgis
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lijun Zhu
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oral and Maxillofacial Surgery, Guangdong General Hospital and Guangdong Academy of Medical Science, Guangzhou, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojun Li
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Peckham-Gregory EC, Thapa DR, Martinson J, Duggal P, Penugonda S, Bream JH, Chang PY, Dandekar S, Chang SC, Detels R, Martínez-Maza O, Zhang ZF, Hussain SK. MicroRNA-related polymorphisms and non-Hodgkin lymphoma susceptibility in the Multicenter AIDS Cohort Study. Cancer Epidemiol 2016; 45:47-57. [PMID: 27701053 DOI: 10.1016/j.canep.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND MicroRNAs, small non-coding RNAs involved in gene regulation, are implicated in lymphomagenesis. We evaluated whether genetic variations in microRNA coding regions, binding sites, or biogenesis genes (collectively referred to as miRNA-SNPs) were associated with risk of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL), and serum levels of four lymphoma-related microRNAs. METHODS Twenty-five miRNA-SNPs were genotyped in 180 AIDS-NHL cases and 529 HIV-infected matched controls from the Multicenter AIDS Cohort Study (MACS), and real-time polymerase chain reaction was used to quantify serum microRNA levels. Adjusted odds ratios (ORs) estimated using conditional logistic regression evaluated associations between miRNA-SNPs and AIDS-NHL risk. A semi-Bayes shrinkage approach was employed to reduce likelihood of false-positive associations. Adjusted mean ratios (MR) calculated using linear regression assessed associations between miRNA-SNPs and serum microRNA levels. RESULTS DDX20 rs197412, a non-synonymous miRNA biogenesis gene SNP, was associated with AIDS-NHL risk (OR=1.34 per minor allele; 95% CI: 1.02-1.75), and higher miRNA-222 serum levels nearing statistical significance (MR=1.21 per minor allele; 95% CI: 0.98-1.49). MiRNA-196a2 rs11614913 was associated with decreased central nervous system (CNS) AIDS-NHL (CT vs. CC OR=0.52; 95% CI: 0.27-0.99). The minor allele of HIF1A rs2057482, which creates a miRNA-196a2 binding site, was associated with systemic AIDS-NHL risk (OR=1.73 per minor allele; 95% CI: 1.12-2.67), and decreased CNS AIDS-NHL risk (OR=0.49 per minor allele; 95% CI: 0.25-0.94). CONCLUSIONS This study suggests that a few miRNA-SNPs are associated with AIDS-NHL risk and may modulate miRNA expression. These results support a role for miRNA in AIDS-NHL and may highlight pathways to be targeted for risk stratification or therapeutics.
Collapse
Affiliation(s)
- Erin C Peckham-Gregory
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA.
| | - Dharma R Thapa
- Departments of Obstetrics and Gynecology, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Box 951740, 153 BSRB, Los Angeles, CA 90095-1740, USA
| | - Jeremy Martinson
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, 403 Parran Hall, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Priya Duggal
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Room E6539, Baltimore, MD 21205, USA
| | - Sudhir Penugonda
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Room E5624, Baltimore, MD 21205, USA
| | - Po-Yin Chang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA
| | - Sugandha Dandekar
- The UCLA Genotyping and Sequencing Core, Department of Human Genetics, David Geffen School of Medicine, UCLA, CHS 36-125, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Shen-Chih Chang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA
| | - Otoniel Martínez-Maza
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA; Departments of Obstetrics and Gynecology, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Box 951740, 153 BSRB, Los Angeles, CA 90095-1740, USA; Jonsson Comprehensive Cancer Center, UCLA, Box 951740, 153 BSRB, Los Angeles, CA 90095-1740, USA; UCLA AIDS Institute, UCLA, Box 951740, 153 BSRB, Los Angeles, CA 90095-1740, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA
| | - Shehnaz K Hussain
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Box 951772, 71-267 CHS, Los Angeles, CA 90095-1772, USA; Department of Medicine and Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, West Hollywood, CA 90048, USA
| |
Collapse
|
40
|
Zhang W, Liu H, Yin J, Wu W, Zhu D, Amos CI, Fang S, Lee JE, Li Y, Han J, Wei Q. Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival. Int J Cancer 2016; 139:2730-2737. [PMID: 27578485 DOI: 10.1002/ijc.30409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
The Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control and thus may be involved in cancer development. In this study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-piRNA pathway genes in melanoma disease-specific survival. A published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses' Health Study and Health Professionals Follow-up Study. After multiple testing correction, we found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3' UTR microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence interval (CI) = 1.21-2.27, p =1.50 × 10-3 ] and validation dataset (HR = 1.55, 95% CI = 1.03-2.34, p = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI, 1.26-2.08, p =1.55 × 10-4 ). Using RNA-seq data from the 1000 Genomes Project, we found that DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. Additional large, prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongliang Liu
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Jieyun Yin
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Dakai Zhu
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Qingyi Wei
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
41
|
A let-7 microRNA binding site polymorphism in the KRAS 3′UTR is associated with increased risk and reduced survival for gallbladder cancer in North Indian population. J Cancer Res Clin Oncol 2016; 142:2577-2583. [DOI: 10.1007/s00432-016-2254-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
|
42
|
Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, Shpitzer T. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett 2016; 12:1729-1736. [PMID: 27602107 PMCID: PMC4998201 DOI: 10.3892/ol.2016.4892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Oral cavity squamous cell carcinoma may be more aggressive at presentation and recurrence in young patients compared with older patients. Dysregulation of microRNAs (miRNAs or miRs) has been associated with the development and prognosis of oral cavity cancer. The present study investigated miRNA expression in carcinoma of the oral tongue in young patients. miRNA expression profiles were evaluated in formalin-fixed, paraffin-embedded samples of tumor and normal mucosa from 12 patients aged <30 years old with squamous cell carcinoma of the tongue. The levels of let-7f-5p, miR-30b-5p and let-7e-5p were upregulated in tumors (P<0.05). The expression of let-7f-5p was upregulated in non-aggressive tumors, while the expression of let-7e-5p was upregulated in aggressive tumors, compared with the corresponding normal tissue. Aggressive tumors had higher levels of let-7c, miR-130a-3p, miR-361-5p, miR-99a-5p, miR-29c-3p and let-7d-5p than non-aggressive tumors (P<0.05). The findings remained significant for let-7c upon false-discovery rate correction. An excellent correlation was noticed on validation of NanoString counts by quantitative polymerase chain reaction. The comparison with published findings in adults demonstrated a unique miRNA signature in young patients with aggressive disease. Aggressive oral cavity cancer in patients <30 years old is associated with a distinctive expression pattern of the let-7 family. Larger studies including direct comparison with older patients are warranted.
Collapse
Affiliation(s)
- Ohad Hilly
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sagit Stern
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yulia Strenov
- Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Gideon Bachar
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas Shpitzer
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Egeli U, Ak S, Cecener G, Tunca B, Tezcan G, Sevinc ED, Kaya E, Dundar HZ, Sarkut P, Ozen Y, Balcin O, Evrensel T, Yerci O, Ugras N. Impact of 3'UTR variation patterns of the KRAS gene on the aggressiveness of pancreatobiliary tumors with the KRAS G13D mutation in a Turkish population. Pancreatology 2016; 16:677-86. [PMID: 27256640 DOI: 10.1016/j.pan.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several studies have demonstrated the importance of mutations in codons 12, 13 and 61 and variations in the 3' untranslated region (3'UTR) of the KRAS gene, frequently observed genetic events in the progression of pancreatobiliary tumors (PBT). However, limited data exist on the clinical effect of these alterations. The aim of the current study was to clarify the frequency of relevant alterations of the 3'UTR regions of the KRAS gene and the effect of KRAS 3'UTR polymorphisms on the prognosis of patients with codon 12, 13 and 61 mutations in a Turkish population with PBT. METHODS Codons 12, 13, and 61 and 3'UTRs of the KRAS gene were screened by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing in 43 patients and 10 controls. Chi-squared and independent sample T tests were used to evaluate the results of the mutation analysis and clinical features of the patients. RESULTS We defined the c.38G > A (rs112445441, p.G13D) (39.54%) mutation and two 3'UTR variations, c.*4066delA (rs560890523) (23.26%) and c.*4065_*4066delAA (rs57698689) (6.98%), in the KRAS gene of Turkish patients. There was a statistically significant relationship between the c.*4066delA (rs560890523) and c.*4065_*4066delAA (rs57698689) variations and invasion and lymph node metastasis status of the patients (p < 0.001). Compared to patients with c.38G > A (rs112445441, p.G13D), patients with c.*4066delA (rs560890523) and c.38G > A (rs112445441, p.G13D) presented more aggressive tumors with highly invasive features. The present study contributes findings regarding the clinical effects of KRAS alterations in PBT. Based on our study, further investigations are required.
Collapse
Affiliation(s)
- Unal Egeli
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey.
| | - Secil Ak
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey
| | | | - Ekrem Kaya
- Department of General Surgery, Medical Faculty, Uludag University, Bursa, Turkey
| | - Halit Ziya Dundar
- Department of General Surgery, Medical Faculty, Uludag University, Bursa, Turkey
| | - Pinar Sarkut
- Department of General Surgery, Medical Faculty, Uludag University, Bursa, Turkey
| | - Yilmaz Ozen
- Department of General Surgery, Medical Faculty, Uludag University, Bursa, Turkey
| | - Ozkan Balcin
- Department of General Surgery, Medical Faculty, Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Omer Yerci
- Department of Pathology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Nesrin Ugras
- Department of Pathology, Medical Faculty, Uludag University, Bursa, Turkey
| |
Collapse
|
44
|
Murugan AK, Munirajan AK, Alzahrani AS. MicroRNAs: Modulators of theRasOncogenes in Oral Cancer. J Cell Physiol 2015; 231:1424-31. [DOI: 10.1002/jcp.25269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology; King Faisal Specialist Hospital and Research Center; Riyadh Kingdom of Saudi Arabia
| | - Arasambattu Kannan Munirajan
- Department of Genetics; Dr. ALM PG Institute of Basic Medical Sciences; University of Madras; Taramani Chennai India
| | - Ali S. Alzahrani
- Department of Molecular Oncology; King Faisal Specialist Hospital and Research Center; Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
45
|
Tiwari P, Sahay S, Pandey M, Qadri SSYH, Gupta KP. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs. Biochimie 2015; 121:112-22. [PMID: 26655363 DOI: 10.1016/j.biochi.2015.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.
Collapse
Affiliation(s)
- Prakash Tiwari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Satya Sahay
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Manuraj Pandey
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Syed S Y H Qadri
- Pathology Division, National Institute of Nutrition, Hyderabad, India
| | - Krishna P Gupta
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India.
| |
Collapse
|
46
|
Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep 2015; 5:16331. [PMID: 26573509 PMCID: PMC4648064 DOI: 10.1038/srep16331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs were described to target mRNA and regulate the transcription of genes involved in processes de-regulated in tumorigenesis, such as proliferation, differentiation and survival. In particular, the miRNA let-7 has been suggested to regulate the expression of the KRAS gene, a common mutated gene in non-small cell lung cancer (NSCLC), through a let-7 complementary site (LCS) in 3′UTR of KRAS mRNA. We have reported the analysis performed on the role of the polymorphism located in the KRAS-LCS (rs61764370) which is involved in the disruption of the let-7 complementary site in NSCLC patients enrolled within the TAILOR trial, a randomised trial comparing erlotinib versus docetaxel in second line treatment. In our cohort of patients, KRAS-LCS6 polymorphism did not have any impact on both overall survival (OS) and progression free survival (PFS) and was not associated with any patient’s baseline characteristics included in the study. Overall, patients had a better prognosis when treated with docetaxel instead of erlotinib for both OS and PFS. Considering KRAS-LCS6 status, the TG/GG patients had a benefit from docetaxel treatment (HR(docetaxel vs erlotinib) = 0.35, 95% CI 0.15–0.79, p = 0.011) compared with the TT patients (HR(docetaxel vs erlotinib) = 0.72, 95% CI 0.52–1.01, p = 0.056) in terms of PFS.
Collapse
|
47
|
Li FF, Han Y, Shi S, Li X, Zhu XD, Zhou J, Shao QL, Li XQ, Liu SL. Characterization of Transcriptional Repressor Gene MSX1 Variations for Possible Associations with Congenital Heart Diseases. PLoS One 2015; 10:e0142666. [PMID: 26556783 PMCID: PMC4640503 DOI: 10.1371/journal.pone.0142666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/26/2015] [Indexed: 01/26/2023] Open
Abstract
Background The human heart consists of several cell types with distinct lineage origins. Interactions between these cardiac progenitors are very important for heart formation. The muscle segment homeobox gene family plays a key role in the cell morphogenesis and growth, controlled cellular proliferation, differentiation, and apoptosis, but the relationships between the genetic abnormalities and CHD phenotypes still remain largely unknown. The aim of this work was to evaluate variations in MSX1 and MSX2 for their possible associations with CHD. Methods We sequenced the MSX1 and MSX2 genes for 300 Chinese Han CHD patients and 400 normal controls and identified the variations. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE. Results Six variations rs4647952, rs2048152, rs4242182, rs61739543, rs111542301 and rs3087539 were identified in the MSX2 gene, but the genetic heterozygosity of those SNPs was very low. In contrast, the genetic heterozygosity of two variations rs3821949 near the 5’UTR and rs12532 within 3’UTR of the MSX1 gene was considerably high. Statistical analyses showed that rs3821949 and rs12532 were associated with the risk of CHD (specifically VSD). Conclusions The SNPs rs3821949 and rs12532 in the MSX1 gene were associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Fei-Feng Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Ying Han
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xia Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Xi-Dong Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Zhou
- Intensive care unit, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Liang Shao
- Department of Neonatalogy, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Qi Li
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (S-LL); (X-QL)
| | - Shu-Lin Liu
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- * E-mail: (S-LL); (X-QL)
| |
Collapse
|
48
|
Dai Q, Wei HL, Huang J, Zhou TJ, Chai L, Yang ZH. KRAS polymorphisms are associated with survival of CRC in Chinese population. Tumour Biol 2015; 37:4727-34. [PMID: 26515332 DOI: 10.1007/s13277-015-4314-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
rs12245, rs12587, rs9266, rs1137282, rs61764370, and rs712 of KRAS oncogene are characterized in the 3'UTR. The study highlights the important role of these polymorphisms playing in the susceptibility, oxaliplatin-based chemotherapy sensitivity, progression, and prognosis of CRC. Improved multiplex ligation detection reaction (iMLDR) technique is used for genotyping. An unconditional logistic regression model was used to estimate the association of certain polymorphism and CRC risk. The Kaplan-Meier method, log-rank test, and Cox regression model were used to evaluate the effects of polymorphisms on survival analysis. Results demonstrated that TT genotype and T allele of rs712 were associated with the increased risk of CRC; the patients with GG genotype and G allele of rs61764370 had a shorter survival and a higher risk of relapse or metastasis of CRC. Our studies supported the conclusions that rs61764370 and rs712 polymorphisms of the KRAS are functional and it may play an important role in the development of CRC and oxaliplatin-based chemotherapy efficiency and prognosis of CRC.
Collapse
Affiliation(s)
- Qiong Dai
- Department of Human Anatomy, Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China
| | - Hui Lian Wei
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China
| | - Juan Huang
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tie Jun Zhou
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China
| | - Li Chai
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhi-Hui Yang
- Department of Pathology, The First Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
49
|
Wang X, Li W, Ma L, Gao J, Liu J, Ping F, Nie M. Association study of the miRNA-binding site polymorphisms of CDKN2A/B genes with gestational diabetes mellitus susceptibility. Acta Diabetol 2015; 52:951-8. [PMID: 25990668 DOI: 10.1007/s00592-015-0768-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) is a complex disease induced by a combination of genetic factors and environmental exposures. Growing evidence suggests that common single nucleotide polymorphisms within miRNA-binding sites (miR-binding SNPs) contribute to the development of various diseases. However, the roles of miR-binding SNPs in GDM have not been fully elucidated. The CDKN2A/B genes have been identified as two of the strongest genetic determinants for diabetes risk. The aim of the study was to first investigate the associations between miR-binding SNPs of CDKN2A/B, GDM susceptibility, and quantitative metabolism traits. METHODS Three miR-binding SNPs of CDKN2A/B gene (rs1063192, rs3217992, and rs3088440) were selected and genotyped using TaqMan allelic discrimination assays in 839 cases of GDM and 900 controls. RESULTS The CC genotype of CDKN2B rs1063192, which is located in the hsa-miR-323b-5p binding site, was significantly associated with GDM [OR 1.418 (1.143, 1.908); p = 0.003]. The C allele of rs1063192 occurred with significantly higher frequency in GDM [OR 1.22 (1.03, 1.44); p = 0.021]. The rs1063192 genotype CC exhibited increased glucose levels at 1 h and 3 h, as well as higher insulin levels at 3 h during an OGTT compared with the control TT genotype (p < 0.05). We also found that the rs1063192 CC genotype was associated with lower total cholesterol and LDL cholesterol levels (p < 0.05). CONCLUSIONS The CC genotype of CDKN2B rs1063192 in the hsa-miR-323b-5p binding site increased the risk of GDM in pregnant Chinese Han women. Importantly, our study provides evidence that miR-binding SNPs are a novel source of GDM susceptibility loci.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuai Fu Yuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuai Fu Yuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jinsong Gao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Juntao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuai Fu Yuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuai Fu Yuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
50
|
Nana-Sinkam SP, Croce CM. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol 2015; 15:445. [PMID: 25315999 PMCID: PMC4709998 DOI: 10.1186/s13059-014-0445-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past two decades, microRNAs have emerged as crucial mediators of organ development and human disease. Here, we discuss their role as drivers or suppressors of the hallmarks of cancer during tumorigenesis and progression, in defining interpatient heterogeneity and the promise of therapeutic application.
Collapse
|