1
|
Gandhi H, Mahant S, Sharma AK, Kumar D, Dua K, Chellappan DK, Singh SK, Gupta G, Aljabali AAA, Tambuwala MM, Kapoor DN. Exploring the therapeutic potential of naturally occurring piceatannol in non-communicable diseases. Biofactors 2024; 50:232-249. [PMID: 37702264 DOI: 10.1002/biof.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.
Collapse
Affiliation(s)
- Himanshu Gandhi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Shikha Mahant
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Parupathi P, Campanelli G, Deabel RA, Puaar A, Devarakonda LS, Kumar A, Levenson AS. Gnetin C Intercepts MTA1-Associated Neoplastic Progression in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246038. [PMID: 36551523 PMCID: PMC9775406 DOI: 10.3390/cancers14246038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Nutritional chemoprevention is particularly suitable for prostate cancer. Gnetin C, a resveratrol dimer found abundantly in the melinjo plant (Gnetum gnemon), may possess more potent biological properties compared to other stilbenes. We examined the effects of gnetin C in a high-risk premalignant transgenic mouse model overexpressing tumor-promoting metastasis-associated protein 1 (MTA1) on the background of Pten heterozygosity (R26MTA1; Pten+/f; Pb-Cre+). Mice were fed diets supplemented with the following compounds: pterostilbene (70 mg/kg diet); gnetin C, high dose (70 mg/kg diet); and gnetin C, low dose (35 mg/kg diet). Prostate tissues were isolated after 17 weeks and examined for histopathology and molecular markers. Serum was analyzed for cytokine expression. Gnetin C-supplemented diets substantially delayed the progression of preneoplastic lesions compared to other groups. Prostate tissues from gnetin C-fed mice showed favorable histopathology, with decreased severity and number of prostatic intraepithelial neoplasia (PIN) foci, reduced proliferation, and angiogenesis. A decreased level of MTA1, concurrent with the trend of increasing phosphatase and tensin homolog expression and reduced interleukin 2 (IL-2) levels in sera, were also detected in gnetin C-fed mice. Importantly, gnetin C did not exert any visible toxicity in mice. Our findings demonstrate that a gnetin C-supplemented diet effectively blocks MTA1-promoted tumor progression activity in high-risk premalignant prostate cancer, which indicates its potential as a novel form of nutritional interception for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Gisella Campanelli
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Rabab Al Deabel
- Department of Biomedical Sciences, School of Health Professions and Nursing, Long Island University, Brookville, NY 11548, USA
| | - Anand Puaar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Lakshmi Sirisha Devarakonda
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Anait S. Levenson
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Correspondence:
| |
Collapse
|
3
|
Levenson AS. Dietary stilbenes as modulators of specific miRNAs in prostate cancer. Front Pharmacol 2022; 13:970280. [PMID: 36091792 PMCID: PMC9449421 DOI: 10.3389/fphar.2022.970280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulated experimental data have suggested that natural plant products may be effective miRNA-modulating chemopreventive and therapeutic agents. Dietary polyphenols such as flavonoids, stilbenes, and lignans, among others, have been intensively studied for their miRNA-mediated cardioprotective, antioxidant, anti-inflammatory and anticancer properties. The aim of this review is to outline known stilbene-regulated miRNAs in cancer, with a special focus on the interplay between various miRNAs and MTA1 signaling in prostate cancer. MTA1 is an epigenetic reader and an oncogenic transcription factor that is overexpressed in advanced prostate cancer and metastasis. Not surprisingly, miRNAs that are linked to MTA1 affect cancer progression and the metastatic potential of cells. Studies led to the identification of MTA1-associated pro-oncogenic miRNAs, which are regulated by stilbenes such as resveratrol and pterostilbene. Specifically, it has been shown that inhibition of the activity of the MTA1 regulated oncogenic miR-17 family of miRNAs, miR-22, and miR-34a by stilbenes leads to inhibition of prostatic hyperplasia and tumor progression in mice and reduction of proliferation, survival and invasion of prostate cancer cells in vitro. Taken together, these findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
|
4
|
Siedlecka-Kroplewska K, Wrońska A, Kmieć Z. Piceatannol, a Structural Analog of Resveratrol, Is an Apoptosis Inducer and a Multidrug Resistance Modulator in HL-60 Human Acute Myeloid Leukemia Cells. Int J Mol Sci 2021; 22:10597. [PMID: 34638937 PMCID: PMC8509003 DOI: 10.3390/ijms221910597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Despite recent advances in the treatment of this disease, the prognosis and overall long-term survival for patients remain poor, which drives the search for new chemotherapeutics and treatment strategies. Piceatannol, a polyphenolic compound present in grapes and wine, appears to be a promising chemotherapeutic agent in the treatment of leukemia. The aim of the present study was to examine whether piceatannol induces autophagy and/or apoptosis in HL-60 human acute myeloid leukemia cells and whether HL-60 cells are able to acquire resistance to piceatannol toxicity. We found that piceatannol at the IC90 concentration of 14 µM did not induce autophagy in HL-60 cells. However, it induced caspase-dependent apoptosis characterized by phosphatidylserine externalization, disruption of the mitochondrial membrane potential, caspase-3 activation, internucleosomal DNA fragmentation, PARP1 cleavage, chromatin condensation, and fragmentation of cell nuclei. Our findings also imply that HL-60 cells are able to acquire resistance to piceatannol toxicity via mechanisms related to MRP1 activity. Our results suggest that the use of piceatannol as a potential chemotherapeutic agent may be associated with the risk of multidrug resistance, warranting its use in combination with other chemotherapeutic agents.
Collapse
|
5
|
Komorowska D, Gajewska A, Hikisz P, Bartosz G, Rodacka A. Comparison of the Effects of Resveratrol and Its Derivatives on the Radiation Response of MCF-7 Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22179511. [PMID: 34502426 PMCID: PMC8431402 DOI: 10.3390/ijms22179511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy is among the most important methods for breast cancer treatment. However, this method's effectiveness is limited by radioresistance. The aim of this study was to investigate whether the stilbene derivatives piceid, resveratrol, and piceatannol have a radiosensitising effect on breast cancer cells (MCF-7). The conducted research enabled us to determine which of the tested compounds has the greatest potential in sensitising cells to ionising radiation (IR). Among the stilbene derivatives, resveratrol significantly increased the effect of IR. Resveratrol and IR used in combination had a higher cytotoxic effect on MCF-7 cells than using piceatannol, piceid, or radiation alone. This was due to a significant decrease in the activity of antioxidant enzymes, which resulted in the accumulation of formed reactive oxygen species (ROS). The effect of resveratrol and IR enhanced the expression of apoptotic genes, such as Bax, p53, and caspase 8, leading to apoptosis.
Collapse
Affiliation(s)
- Dominika Komorowska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (D.K.); (A.G.); (P.H.)
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (D.K.); (A.G.); (P.H.)
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (D.K.); (A.G.); (P.H.)
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza St., 35-601 Rzeszow, Poland;
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (D.K.); (A.G.); (P.H.)
- Correspondence: ; Fax: +48-426354473
| |
Collapse
|
6
|
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2020; 213:113037. [PMID: 33257172 DOI: 10.1016/j.ejmech.2020.113037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer is the world's devastating disease, and breast cancer is the most common reason for the death of women worldwide. Many synthetic drugs and medications are provided with their beneficial actions, but all of these have side effects and resistance problems. Natural remedies are coming forward to overcome the disadvantages of synthetic drugs. Among the natural categories, phytoestrogens having a structural similarity of mammalian oestradiol proves its benefit with various mechanisms not only in the treatment of breast cancer but even to prevent the occurrence of postmenopausal symptoms. Phytoestrogens are plant-derived compounds that were utilized in ancient medications and traditional knowledge for its sex hormone properties. Phytoestrogens exert pleiotropic effects on cellular signalling and show effects on estrogen-dependent diseases. However, because of activation/inhibition of steroid hormonal receptor ER-α or ER-β, these compounds induce or inhibit steroid hormonal (estrogen) action and, therefore, have the potential to disrupt hormone (estrogen) signalling pathway. In this review, we have discussed and summarize the effect of certain phytoestrogens and their possible mechanisms that can substantiate advantageous benefits for the treatment of post-menopausal symptoms as well as for breast cancer.
Collapse
Affiliation(s)
- Ankur Kumar Tanwar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Neha Dhiman
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
7
|
Siedlecka-Kroplewska K, Ślebioda T, Kmieć Z. Induction of autophagy, apoptosis and aquisition of resistance in response to piceatannol toxicity in MOLT-4 human leukemia cells. Toxicol In Vitro 2019; 59:12-25. [DOI: 10.1016/j.tiv.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
|
8
|
Klopčič I, Markovič T, Mlinarič-Raščan I, Sollner Dolenc M. Endocrine disrupting activities and immunomodulatory effects in lymphoblastoid cell lines of diclofenac, 4-hydroxydiclofenac and paracetamol. Toxicol Lett 2018; 294:95-104. [DOI: 10.1016/j.toxlet.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
|
9
|
Surh YJ, Na HK. Therapeutic Potential and Molecular Targets of Piceatannol in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:185-211. [PMID: 27671818 DOI: 10.1007/978-3-319-41334-1_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Piceatannol (3,3',4,5'-tetrahydroxy-trans-stilbene; PIC) is a naturally occurring stilbene present in diverse plant sources. PIC is a hydroxylated analog of resveratrol and produced from resveratrol by microsomal cytochrome P450 1A11/2 and 1B1 activities. Like resveratrol, PIC has a broad spectrum of health beneficial effects, many of which are attributable to its antioxidative and anti-inflammatory activities. PIC exerts anticarcinogenic effects by targeting specific proteins involved in regulating cancer cell proliferation, survival/death, invasion, metastasis, angiogenesis, etc. in tumor microenvironment. PIC also has other health promoting and disease preventing functions, such as anti-obese, antidiabetic, neuroptotective, cardioprotective, anti-allergic, anti-aging properties. This review outlines the principal biological activities of PIC and underlying mechanisms with special focus on intracellular signaling molecules/pathways involved.
Collapse
Affiliation(s)
- Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, 142-732, South Korea.
| |
Collapse
|
10
|
Alcoholic Beverage Consumption and Chronic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060522. [PMID: 27231920 PMCID: PMC4923979 DOI: 10.3390/ijerph13060522] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological and experimental studies have consistently linked alcoholic beverage consumption with the development of several chronic disorders, such as cancer, cardiovascular diseases, diabetes mellitus and obesity. The impact of drinking is usually dose-dependent, and light to moderate drinking tends to lower risks of certain diseases, while heavy drinking tends to increase the risks. Besides, other factors such as drinking frequency, genetic susceptibility, smoking, diet, and hormone status can modify the association. The amount of ethanol in alcoholic beverages is the determining factor in most cases, and beverage types could also make an influence. This review summarizes recent studies on alcoholic beverage consumption and several chronic diseases, trying to assess the effects of different drinking patterns, beverage types, interaction with other risk factors, and provide mechanistic explanations.
Collapse
|
11
|
Meléndez García R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez Imm R, Baeza Cruz G, Adán N, Binart N, Riesgo-Escovar J, Goffin V, Ordaz B, Peña-Ortega F, Martínez-Torres A, Clapp C, Thebault S. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016; 7:35-49. [PMID: 27322457 PMCID: PMC4909382 DOI: 10.1016/j.ebiom.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.
Collapse
Affiliation(s)
- Rodrigo Meléndez García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - German Baeza Cruz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U1185, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre 94270, France
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale, U1151, Institut Necker Enfants Malades, Université Paris-Descartes, Faculté de Médecine, Sorbonne Paris Cité, 75014, France
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
12
|
Adiabouah Achy-Brou CA, Billack B. A comparative assessment of the cytotoxicity and nitric oxide reducing ability of resveratrol, pterostilbene and piceatannol in transformed and normal mouse macrophages. Drug Chem Toxicol 2016; 40:36-46. [PMID: 27079867 DOI: 10.3109/01480545.2016.1169542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the pharmacological effects of three stilbenoids, resveratrol (RES), pterostilbene (PTR) and piceatannol (PIC), in transformed and normal macrophages. Our first aim was to comparatively assess the cytotoxicity of RES, PTR and PIC in unstimulated transformed mouse macrophages (RAW 264.7 cells) and primary peritoneal macrophages (PMs) harvested from both wild type and Nrf2 (nuclear factor erythroid 2-related factor 2)-deficient female mice. Our second aim was to investigate whether the inhibitory effect of RES, PTR and PIC on nitric oxide (NO) release from stimulated PMs depends on the status of the transcription factor Nrf2. The rationale for investigating Nrf2 status was based upon recent reports showing that certain compounds (sulforaphane and linalool) suppress LPS-induced inflammation in an Nrf2-dependent manner. Cell viability studies confirmed our prior work in unstimulated RAW 264.7 cells, with cytotoxic potency decreasing in the order of PTR > PIC > RES. Unstimulated PMs, regardless of Nrf2 status, were less sensitive to stilbenes, requiring at least a threefold higher stilbene concentration to inhibit cell viability, with cytotoxic potency again decreasing in the order of PTR > PIC > RES. In studies focused on our second aim, IC50 values for NO inhibition (measured as [Formula: see text]) in wild type PMs were similar for all three stilbenes (∼10 μM). In Nrf2-deficient PMs, the IC50 for NO inhibition by PIC did not change; however, a rightward shift in the concentration effect curve was observed for both RES and PTR, indicating a role for Nrf2 in the suppression of LPS-induced [Formula: see text] accumulation by these particular stilbenes.
Collapse
Affiliation(s)
| | - Blase Billack
- a Department of Pharmaceutical Sciences , College of Pharmacy and Health Sciences, St. John's University , Jamaica , NY , USA
| |
Collapse
|
13
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
14
|
Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, Levenson AS. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 2013; 73:1135-46. [PMID: 23657951 DOI: 10.1002/pros.22657] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/30/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Resveratrol (Res) is recognized as a promising cancer chemoprevention dietary polyphenol with antioxidative, anti-inflammatory, and anticancer properties. However, the role of its analogues in prostate cancer (PCa) chemoprevention is unknown. METHODS We synthesized several natural and synthetic analogues of Res and characterized their effects on PCa cells in vitro using a cell proliferation assay. A colony formation assay and in vitro validation of luciferase (Luc) activity was done for LNCaP-Luc cells that were consequently used for in vivo studies. The efficacy of Res, trimethoxy-resveratrol (3M-Res) and piceatannol (PIC) was studied in a subcutaneous (s.c.) model of PCa using oral gavage. Tumor progression was monitored by traditional caliper and bioluminescent imaging. The levels of cytokines in serum were examined by ELISA, and the levels of compounds in serum and tumor tissues were determined by gas chromatography-mass spectrometry. RESULTS We examined the anti-proliferative activities of Res/analogues in three PCa cell lines. We further compared the chemopreventive effects of oral Res, 3M-Res, and PIC in LNCaP-Luc-xenografts. We found that 2 weeks pretreatment with the compounds diminished cell colonization, reduced tumor volume, and decreased tumor growth in the xenografts. Both 3M-Res and PIC demonstrated higher potency in inhibiting tumor progression compared to Res. Notably, 3M-Res was the most active in inhibiting cell proliferation and suppressing colony formation, and its accumulation in both serum and tumor tissues was the highest. CONCLUSIONS Our findings offer strong pre-clinical evidence for the utilization of dietary stilbenes, particularly 3M-Res, as novel, potent, effective chemopreventive agents in PCa.
Collapse
Affiliation(s)
- Steven J Dias
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Unger C, Popescu R, Giessrigl B, Laimer D, Heider S, Seelinger M, Diaz R, Wallnöfer B, Egger G, Hassler M, Knöfler M, Saleh L, Sahin E, Grusch M, Fritzer-Szekeres M, Dolznig H, Frisch R, Kenner L, Kopp B, Krupitza G. The dichloromethane extract of the ethnomedicinal plant Neurolaena lobata inhibits NPM/ALK expression which is causal for anaplastic large cell lymphomagenesis. Int J Oncol 2012; 42:338-48. [PMID: 23135783 DOI: 10.3892/ijo.2012.1690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 11/05/2022] Open
Abstract
The present study investigates extracts of Neuolaena lobata, an anti-protozoan ethnomedicinal plant of the Maya, regarding its anti-neoplastic properties. Firstly, extracts of increasing polarity were tested in HL-60 cells analyzing inhibition of cell proliferation and apoptosis induction. Secondly, the most active extract was further tested in anaplastic large cell lymphoma (ALCL) cell lines of human and mouse origin. The dichloromethane extract inhibited proliferation of HL-60, human and mouse ALCL cells with an IC50 of ~2.5, 3.7 and 2.4 µg/ml, respectively and arrested cells in the G2/M phase. The extract induced the checkpoint kinases Chk1 and Chk2 and perturbed the orchestrated expression of the Cdc25 family of cell cycle phosphatases which was paralleled by the activation of p53, p21 and downregulation of c-Myc. Importantly, the expression of NPM/ALK and its effector JunB were drastically decreased, which correlated with the activation of caspase 3. Subsequently also platelet derived growth factor receptor β was downregulated, which was recently shown to be transcriptionally controlled by JunB synergizing with ALK in ALCL development. We show that a traditional healing plant extract downregulates various oncogenes, induces tumor suppressors, inhibits cell proliferation and triggers apoptosis of malignant cells. The discovery of the 'Active Principle(s)' is warranted.
Collapse
Affiliation(s)
- Christine Unger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cho HJ, Shim JH, So HS, YoonPark JH. Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide. ACTA ACUST UNITED AC 2012. [DOI: 10.3746/jkfn.2012.41.9.1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
He Z, Cui P, Ye C, Ma WY, Bode A, Dong Z. Analysis of the role of p38 MAP kinase in epidermal growth factor-induced JB6 Cl41 cell transformation by cDNA array. Gene 2012; 497:71-8. [PMID: 22301268 DOI: 10.1016/j.gene.2011.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 11/28/2011] [Accepted: 12/22/2011] [Indexed: 12/01/2022]
Abstract
To further explore the mechanism of p38 MAP kinase in regulation of JB6 Cl41 cell transformation. cDNA array was employed to scan the differential expression genes between DN-p38 cells and CMV-neo JB6 Cl41 cells after EGF stimuli. We found that up-expression genes including oncogenes and tumor suppressor genes, p53-associated protein, transcription repressors, apoptosis-associated genes, and growth arrest and DNA damage-inducible protein 153 were detected in DN-p38 cells, but low expression in CMV-neo JB6 Cl41 cells after EGF treatment. Meanwhile, some proto-oncogenes, such as c-Myc, and signal transducer and activator of transcription 1 (STAT1) were lowly expressed in EGF-stimulated DN-p38 cells, but had relatively high expression level in CMV-neo JB6 Cl41 cells under the same stimuli. Four of the differential expression genes were further confirmed by quantitative RT-PCR analysis. Our results indicate that p38 MAP kinase is involved in EGF-induced JB6 Cl41 cell transformation through effecting on more genes expression levels including transcription factors, proto-oncogene, apoptosis-related genes and growth arrest genes.
Collapse
Affiliation(s)
- Zhiwei He
- China-America Cancer Research Institute, Guangdong Medical College, Dongguan 523808, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Woo A, Min B, Ryoo S. Piceatannol-3'-O-beta-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp Mol Med 2010; 42:524-32. [PMID: 20543547 DOI: 10.3858/emm.2010.42.7.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Arginase competitively inhibits nitric oxide synthase (NOS) via use of the common substrate L-arginine. Arginase II has recently reported as a novel therapeutic target for the treatment of cardiovascular diseases such as atherosclerosis. Here, we demonstrate that piceatannol-3'-O-beta-D-glucopyranoside (PG), a potent component of stilbenes, inhibits the activity of arginase I and II prepared from mouse liver and kidney lysates, respectively, in a dose-dependent manner. In human umbilical vein endothelial cells, incubation of PG markedly blocked arginase activity and increased NOx production, as measured by Griess assay. The PG effect was associated with increase of eNOS dimer ratio, although the protein levels of arginase II or eNOS were not changed. Furthermore, isolated mice aortic rings treated with PG showed inhibited arginase activity that resulted in increased nitric oxide (NO) production upto 78%, as measured using 4-amino-5-methylamino-2',7'-difluorescein (DAF-FM) and a decreased superoxide anions up to 63%, as measured using dihydroethidine (DHE) in the intact endothelium. PG showed IC((50)) value of 11.22 microM and 11.06 microM against arginase I and II, respectively. PG as an arginase inhibitor, therefore, represents a novel molecule for the therapy of cardiovascular diseases derived from endothelial dysfunction and may be used for the design of pharmaceutical compounds.
Collapse
Affiliation(s)
- Ainieng Woo
- Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
19
|
Szekeres T, Fritzer-Szekeres M, Saiko P, Jäger W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm Res 2010; 27:1042-8. [PMID: 20232118 DOI: 10.1007/s11095-010-0090-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/09/2010] [Indexed: 01/23/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a compound found in wine and is held responsible for a number of beneficial effects of red wine. Besides the prevention of heart disease and significant anti-inflammatory effects, resveratrol might inhibit tumor cell growth and even play a role in the aging process. We here describe the structure-activity relationship of resveratrol and analogues of resveratrol regarding the free radical scavenging and antitumor effects of this exciting natural compound. In addition, we have synthesized a number of analogues of resveratrol with the aim to further improve the beneficial effects of resveratrol. Our studies were based on the analysis of structural properties, which were responsible for the most important effects of this compound. Striking in vivo effects can be observed with hexahydroxystilbene (M8), the most effective synthetic analogue of resveratrol. We could show that M8 inhibits tumor as well as metastasis growth of human melanoma in two different animal models, alone and in combination with dacarbacine.
Collapse
Affiliation(s)
- Thomas Szekeres
- Department of Medical and Chemical Laboratory Diagnostics, General Hospital of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|