1
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Daniel JA, Elizarova S, Shaib AH, Chouaib AA, Magnussen HM, Wang J, Brose N, Rhee J, Tirard M. An intellectual-disability-associated mutation of the transcriptional regulator NACC1 impairs glutamatergic neurotransmission. Front Mol Neurosci 2023; 16:1115880. [PMID: 37533751 PMCID: PMC10393139 DOI: 10.3389/fnmol.2023.1115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.
Collapse
Affiliation(s)
- James A. Daniel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sofia Elizarova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ali H. Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Abed A. Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Helge M. Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
3
|
Nucleus Accumbens-Associated Protein 1 Binds DNA Directly through the BEN Domain in a Sequence-Specific Manner. Biomedicines 2020; 8:biomedicines8120608. [PMID: 33327466 PMCID: PMC7764960 DOI: 10.3390/biomedicines8120608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/03/2023] Open
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a nuclear protein that harbors an amino-terminal BTB domain and a carboxyl-terminal BEN domain. NAC1 appears to play significant and diverse functions in cancer and stem cell biology. Here we demonstrated that the BEN domain of NAC1 is a sequence-specific DNA-binding domain. We selected the palindromic 6 bp motif ACATGT as a target sequence by using a PCR-assisted random oligonucleotide selection approach. The interaction between NAC1 and target DNA was characterized by gel shift assays, pull-down assays, isothermal titration calorimetry (ITC), chromatin-immunoprecipitation assays, and NMR chemical shifts perturbation (CSP). The solution NMR structure revealed that the BEN domain of human NAC-1 is composed of five conserved α helices and two short β sheets, with an additional hitherto unknown N-terminal α helix. In particular, ITC clarified that there are two sequential events in the titration of the BEN domain of NAC1 into the target DNA. The ITC results were further supported by CSP data and structure analyses. Furthermore, live cell photobleaching analyses revealed that the BEN domain of NAC1 alone was unable to interact with chromatin/other proteins in cells.
Collapse
|
4
|
NACC1, as a Target of MicroRNA-331-3p, Regulates Cell Proliferation in Urothelial Carcinoma Cells. Cancers (Basel) 2018; 10:cancers10100347. [PMID: 30248959 PMCID: PMC6210667 DOI: 10.3390/cancers10100347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens-associated protein 1 (NACC1) is a transcription factor constitutively expressed in the urothelium, where it regulates cell growth, senescence, autophagy, and epithelial-mesenchymal transition. microRNA (miRNA) constitutes a class of small non-coding RNAs which are involved in cell proliferation, differentiation, and progression of tumors. miRNAs and their target molecules are utilized for molecular diagnosis of urothelial carcinoma. NACC1 is one of several putative target molecules of miR-331-3p, and is associated with cell proliferation in cancers such as prostate and cervical cancer. Functional experiments involving miR-331-3p and its target molecule NACC1 were conducted using the urothelial carcinoma (UC) cell lines, T24, UMUC6, and KU7. Furthermore, quantitative reverse transcription polymerase chain reaction and immunostaining were performed to evaluate the expression of NACC1 in UC derived from transurethral resection of bladder tumor (TUR-Bt) specimens. The methane thiosulfonate (MTS) assay revealed that cell proliferation was significantly reduced after transient transfection of miR-331-3p precursor and/or NACC1 siRNA in UC cells. Cell senescence via cell cycle arrest at the G1 phase was induced by NACC1 inhibition. On the other hand, suppression of NACC1 induced cell migration and invasion abilities. Immunohistochemical analysis of TUR-Bt specimens revealed that over 70% of UC cells presented strongly positive results for NACC1. In contrast, normal urothelial cells were weakly positive for NACC1. It was also found that NACC1 expression was lower in invasive UC cells than in non-invasive UC cells. Loss of NACC1 induced vessel invasion in invasive UC tissues. The present results indicate that NACC1 regulated by miR-331-3p contributes to cell proliferation, and is involved in cell migration and invasion. This suggests that NACC1 can serve as a potential target molecule for the prediction and prognosis of UC, and can contribute to effective treatment strategies.
Collapse
|
5
|
Nakayama N, Sakashita G, Nariai Y, Kato H, Sinmyozu K, Nakayama JI, Kyo S, Urano T, Nakayama K. Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget 2018; 9:28408-28420. [PMID: 29983869 PMCID: PMC6033357 DOI: 10.18632/oncotarget.25400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023] Open
Abstract
NAC1 is a cancer-related transcription regulator protein that is overexpressed in various carcinomas, including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation of intranuclear NAC1 in ovarian cancer cells remain poorly understood. In this study, analysis of ovarian cancer cell lysates by fast protein liquid chromatography on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300–500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Liquid chromatography-tandem mass spectrometry analysis identified CARM1 as interacting with NAC1 in the protein complex. Furthermore, tissue microarray analysis revealed a significant correlation between CARM1 and NAC1 expression levels. Ovarian cancer patients expressing high levels of NAC1 and CARM1 exhibited poor prognosis after adjuvant chemotherapy. Collectively, our results demonstrate that high expression levels of NAC1 and its novel binding partner CARM1 may serve as an informative prognostic biomarker for predicting resistance to chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Kaori Sinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Japan.,Current address: National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
6
|
Faiola F, Yin N, Fidalgo M, Huang X, Saunders A, Ding J, Guallar D, Dang B, Wang J. NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem Cell Reports 2017; 9:913-926. [PMID: 28781078 PMCID: PMC5599184 DOI: 10.1016/j.stemcr.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is a long and inefficient process. A thorough understanding of the molecular mechanisms underlying reprogramming is paramount for efficient generation and safe application of iPSCs in medicine. While intensive efforts have been devoted to identifying reprogramming facilitators and barriers, a full repertoire of such factors, as well as their mechanistic actions, is poorly defined. Here, we report that NAC1, a pluripotency-associated factor and NANOG partner, is required for establishment of pluripotency during reprogramming. Mechanistically, NAC1 is essential for proper expression of E-cadherin by a dual regulatory mechanism: it facilitates NANOG binding to the E-cadherin promoter and fine-tunes its expression; most importantly, it downregulates the E-cadherin repressor ZEB1 directly via transcriptional repression and indirectly via post-transcriptional activation of the miR-200 miRNAs. Our study thus uncovers a previously unappreciated role for the pluripotency regulator NAC1 in promoting efficient somatic cell reprogramming. NAC1 is critical for efficient iPSC generation NAC1 facilitates NANOG binding to E-cadherin promoter NAC1 binds to Zeb1 promoter and represses its expression NAC1 binds to the miR-200 loci and indirectly activates E-cadherin expression
Collapse
Affiliation(s)
- Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miguel Fidalgo
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arven Saunders
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Baoyen Dang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Ju T, Jin H, Ying R, Xie Q, Zhou C, Gao D. Overexpression of NAC1 confers drug resistance via HOXA9 in colorectal carcinoma cells. Mol Med Rep 2017; 16:3194-3200. [PMID: 28713930 PMCID: PMC5547960 DOI: 10.3892/mmr.2017.6986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common types of malignancy worldwide. Recently, neoadjuvant chemotherapy has become an important treatment strategy for CRC. However, treatment frequently fails due to the development of chemoresistance, which is a major obstacle for positive prognosis. However, the underlying mechanisms of chemoresistance remain unclear. The present study assessed the functions of nucleus accumbens-associated protein 1 (NAC1), an important transcriptional regulator, in CRC progression. Reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry were performed to detect the expression levels of NAC1. It was identified that NAC1 was significantly overexpressed in CRC compared with non-tumorous tissues, indicating an oncogenic role. Following this, gain and loss of function analyses were performed in vitro to further investigate the function of NAC1. Cell viability and caspase-3/7 activity assays were used to assess chemotherapy-induced apoptosis. These results indicated that overexpression of NAC1 in CRC cells increased resistance to chemotherapy and inhibited apoptosis. Additionally, RNA interference-mediated knockdown of NAC1 restored the chemosensitivity of CRC cells. Furthermore, mechanistic investigation revealed that NAC1 increased drug resistance via inducing homeobox A9 (HOXA9) expression, and that knockdown of HOXA9 abrogated NAC1-induced drug resistance. In conclusion, the results of the present study demonstrated that NAC1 may be a critical factor in the development of chemoresistance, offering a potential novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Tongfa Ju
- Department of Gastrointestinal and Anal Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Huicheng Jin
- Department of Gastrointestinal and Anal Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongchao Ying
- Department of Gastrointestinal and Anal Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qi Xie
- Department of Gastrointestinal and Anal Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chunhua Zhou
- Department of Gastrointestinal and Anal Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Daquan Gao
- Department of Hematology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
8
|
Tatsumi K, Sakashita G, Nariai Y, Okazaki K, Kato H, Obayashi E, Yoshida H, Sugiyama K, Park SY, Sekine J, Urano T. G196 epitope tag system: a novel monoclonal antibody, G196, recognizes the small, soluble peptide DLVPR with high affinity. Sci Rep 2017; 7:43480. [PMID: 28266535 PMCID: PMC5339894 DOI: 10.1038/srep43480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Abstract
The recognition specificity of monoclonal antibodies (mAbs) has made mAbs among the most frequently used tools in both basic science research and in clinical diagnosis and therapies. Precise determination of the epitope allows the development of epitope tag systems to be used with recombinant proteins for various purposes. Here we describe a new family of tag derived from the epitope recognized by a highly specific mAb G196. The minimal epitope was identified as the five amino acid sequence Asp-Leu-Val-Pro-Arg. Permutation analysis was used to characterize the binding requirements of mAb G196, and the variable regions of the mAb G196 were identified and structurally analyzed by X-ray crystallography. Isothermal titration calorimetry revealed the high affinity (Kd = 1.25 nM) of the mAb G196/G196-epitope peptide interaction, and G196-tag was used to detect several recombinant cytosolic and nuclear proteins in human and yeast cells. mAb G196 is valuable for developing a new peptide tagging system for cell biology and biochemistry research.
Collapse
Affiliation(s)
- Kasumi Tatsumi
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan.,Department of Oral and Maxillofacial Surgery Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kosuke Okazaki
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Eiji Obayashi
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hisashi Yoshida
- Drug Design Group, Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa, 213-0012, Japan
| | - Kanako Sugiyama
- Drug Design Group, Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa, 213-0012, Japan
| | - Sam-Yong Park
- Drug Design Group, Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa, 213-0012, Japan.,Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Joji Sekine
- Department of Oral and Maxillofacial Surgery Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
9
|
Nakayama N, Kato H, Sakashita G, Nariai Y, Nakayama K, Kyo S, Urano T. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells. Arch Biochem Biophys 2016; 606:10-5. [PMID: 27424155 DOI: 10.1016/j.abb.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
10
|
LIU ZENG, XIAO YU, NING SIQING, LI ZHAOYUAN, ZHU YUANYUAN, HU GANG. Effect of taxol on the expression of FoxM1 ovarian cancer-associated gene. Oncol Lett 2016; 11:4035-4039. [PMID: 27313736 PMCID: PMC4888128 DOI: 10.3892/ol.2016.4490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/22/2016] [Indexed: 01/14/2023] Open
Abstract
The incidence of ovarian cancer in women has been on the increase in recent years. The aim of the present study was to examine the effects of taxol on the expression of ovarian cancer-associated gene forkhead box transcription factor M1 (FoxM1) and its therapeutic effects for ovarian cancer. The expression of FoxM1 gene was examined in patients with or without ovarian cancer. RNA and protein levels of FoxM1 gene of ovarian cancer patients were detected at different time periods (1, 3, 6, 8, 12 and 24 months) after treatment with taxol. The results showed that the mRNA level of FoxM1 gene in patients with ovarian cancer was significantly higher than that in normal women (P<0.05). With time and progression of the disease, the expression of FoxM1 gene significantly increased in the patients not being administered taxol, whereas the expression of FoxM1 in the patients administered taxol was significantly lower comparatively (P<0.05). In conclusion, an asssociation was identified between the FoxM1 gene and ovarian cancer. The FoxM1 gene therefore promotes the generation and deterioration of ovarian cancer, whereas taxol reduces it. These findings provide a certain theoretical basis for the later treatment of ovarian cancer disease.
Collapse
Affiliation(s)
- ZENG LIU
- Department of Nuclear Medicine, Central Hospital of Xiangyang, Xiangyang, Hubei 441021, P.R. China
| | - YU XIAO
- State Drug Clinical Trial Agency, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072, P.R. China
| | - SIQING NING
- Department of Nuclear Medicine, Central Hospital of Xiangyang, Xiangyang, Hubei 441021, P.R. China
| | - ZHAO YUAN LI
- Department of Nuclear Medicine, Central Hospital of Xiangyang, Xiangyang, Hubei 441021, P.R. China
| | - YUANYUAN ZHU
- Department of Nuclear Medicine, Xiangyang No. 1 People's Hospital, Xiangyang, Hubei 441000, P.R. China
| | - GANG HU
- Department of Breast Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
11
|
Cohen MJ, King CR, Dikeakos JD, Mymryk JS. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal. Virology 2014; 468-470:238-243. [PMID: 25194920 DOI: 10.1016/j.virol.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/21/2014] [Accepted: 08/14/2014] [Indexed: 12/11/2022]
Abstract
The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285-289, as well as a second basic patch situated between residues 258 and 263 ((258)RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP(289)). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs.
Collapse
Affiliation(s)
- Michael J Cohen
- Department of Microbiology & Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada
| | - Cason R King
- Department of Microbiology & Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada
| | - Jimmy D Dikeakos
- Department of Microbiology & Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada
| | - Joe S Mymryk
- Department of Microbiology & Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada; Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, Ontario, Canada.
| |
Collapse
|
12
|
Identification of the NAC1-regulated genes in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:133-40. [PMID: 24200849 DOI: 10.1016/j.ajpath.2013.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.
Collapse
|
13
|
Deng S, Zhou Y, Ouyang D, Xiong J, Zhang L, Tu C, Zhang K, Song Z, Zhang F. The effect of dexamethasone on lentiviral vector infection is associated with importin α. Biomed Rep 2013; 2:137-141. [PMID: 24649085 DOI: 10.3892/br.2013.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 02/02/2023] Open
Abstract
Importin α (Imα) plays an important role during the shuttling of the HIV-1 preintegration complex (PIC) from the cytoplasm to the nucleus. Imα may bind to the glucocorticoid receptor (GR), which is localized to nucleus following hormone binding. However, it remains unclear whether the binding of dexamethasone (Dex) to GR affects the Imα redistribution and, thus, alters PIC import. In our study, 293T cells were transfected with the lentiviral vector (LV) carrying the luciferase (Luci) gene following Dex or RU486 pretreatment. The Luci activity (LucA) in the Dex or RU486 group was significantly higher compared to that in the control group (P≤0.01). The effects of Dex and RU486 were inhibited by the Imα inhibitor Bimax1 (P≤0.01), although the inhibitory effect of Bimax1 was alleviated by increasing the Dex dose. Furthermore, it was observed that the LucA in the 30-min Dex treatment group was lower compared to that in the 30-min Dex pretreatment group (P≤0.01). These results suggested that Dex may improve PIC import via increasing the cytoplasmic Imα levels. Kunming mice were transfected in vivo with the LV, either 30 min or 15 h following an intraperitoneal injection of Dex. The LucA in the liver of the 30-min group mice was significantly lower compared to that of the 15-h group mice (P≤0.01), suggesting that the effect of Dex on LV infection depends mainly on the suppression of immune and inflammatory responses in vivo. Taken together, our data indicated that the effect of Dex on LV infection may be associated with Imα, constituting a novel signaling pathway mediating the effects of Dex on HIV-1 infection.
Collapse
Affiliation(s)
- Shengchang Deng
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Zhou
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dong Ouyang
- Jiangxi Police College, Nanchang, Jiangxi 330103, P.R. China
| | - Junping Xiong
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Changchun Tu
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Keping Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zengliang Song
- Department of Neurosurgery, The Third People's Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China
| | - Fanglin Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Nishi T, Maruyama R, Urano T, Nakayama N, Kawabata Y, Yano S, Yoshida M, Nakayama K, Miyazaki K, Takenaga K, Tanaka T, Tajima Y. Low expression of nucleus accumbens-associated protein 1 predicts poor prognosis for patients with pancreatic ductal adenocarcinoma. Pathol Int 2012; 62:802-10. [DOI: 10.1111/pin.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/19/2012] [Indexed: 01/02/2023]
Affiliation(s)
- Takeshi Nishi
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Riruke Maruyama
- Department of Organ Pathology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Takeshi Urano
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo; Japan
| | - Naomi Nakayama
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo; Japan
| | - Yasunari Kawabata
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Seiji Yano
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| | - Manabu Yoshida
- Department of Pathology; Matsue Municipal Hospital; Matsue; Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Kohji Miyazaki
- Department of Obstetrics and Gynecology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Keizo Takenaga
- Life Science Laboratory of Tumor Biology; Shimane University Faculty of Medicine; Izumo; Japan
| | - Tsuneo Tanaka
- Department of Surgery; Ootagawa Hospital; Hiroshima; Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery; Shimane University Faculty of Medicine; Izumo; Japan
| |
Collapse
|