1
|
Kirchner K, Seidel C, Paulsen FO, Sievers B, Bokemeyer C, Lessel D. Further Association of Germline CHEK2 Loss-of-Function Variants with Testicular Germ Cell Tumors. J Clin Med 2023; 12:7065. [PMID: 38002677 PMCID: PMC10672725 DOI: 10.3390/jcm12227065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Christoph Seidel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Finn-Ole Paulsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.S.); (F.-O.P.); (C.B.)
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.K.); (B.S.)
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Crit Rev Oncol Hematol 2023; 183:103928. [PMID: 36717007 DOI: 10.1016/j.critrevonc.2023.103928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.
Collapse
|
3
|
Kirchner K, Gamulin M, Kulis T, Sievers B, Kastelan Z, Lessel D. Comprehensive Clinical and Genetic Analysis of CHEK2 in Croatian Men with Prostate Cancer. Genes (Basel) 2022; 13:1955. [PMID: 36360192 PMCID: PMC9689475 DOI: 10.3390/genes13111955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Germline pathogenic and likely pathogenic (P/LP) variants in CHEK2 have been associated with increased prostate cancer (PrCa) risk. Our objective was to analyze their occurrence in Croatian PrCa men and to evaluate the clinical characteristics of P/LP variant carriers. Therefore, we analyzed CHEK2 in 150 PrCa patients unselected for age of onset, family history of PrCa or clinical outcome, and the frequency of identified variants was compared to findings in 442 cancer-free men, of Croatian ancestry. We identified four PrCa cases harboring a P/LP variant in CHEK2 (4/150, 2.67%), which reached a statistical significance (p = 0.004) as compared to the control group. Patients with P/LP variants in CHEK2 developed PrCa almost 9 years earlier than individuals with CHEK2 wild-type alleles (8.9 years; p = 0.0198) and had an increased risk for lymph node involvement (p = 0.0047). No association was found between CHEK2 status and further clinical characteristics, including the Gleason score, occurrence of aggressive PrCa, the tumor or metastasis stage. However, carriers of the most common P/LP CHEK2 variant, the c.1100delC, p.Thr367Metfs15*, had a significantly higher Gleason score (p = 0.034), risk for lymph node involvement (p = 0.0001), and risk for developing aggressive PrCa (p = 0.027). Thus, in a Croatian population, CHEK2 P/LP variant carriers were associated with increased risk for early onset prostate cancer, and carriers of the c.1100delC, p.Thr367Metfs15* had increased risk for aggressive PrCa.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marija Gamulin
- Department of Oncology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tomislav Kulis
- Department of Urology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Zeljko Kastelan
- Department of Urology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Qin J, Yang Y, Zhuang X, Xing J. Association Between BAK1 Gene rs210138 Polymorphisms and Testicular Germ Cell Tumors: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:2. [PMID: 32038496 PMCID: PMC6989409 DOI: 10.3389/fendo.2020.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Several studies including some genome-wide association studies (GWAS) had shown that BAK1 gene rs210138 polymorphisms might be associated with testicular germ cell tumors (TGCT). Here we tried to sum up the association through a systematic review and meta-analysis. Methods: Studies associated with BAK1 rs210138 and TGCT was systematically searched in databases. The effect size was pooled according to ORs and 95% CIs. Results: Our systematic review and meta-analysis comprised 14 articles. Significantly increased risk of TGCT was found in eligible GWAS and follow-up studies, in overall group and its Caucasian subgroup. Conclusions: Compared with adenine (A), BAK1 rs210138 guanine (G) is associated with increased risk of TGCT. Well-planned studies with larger sample size and more subgroups are needed to verify the risk identified in our systematic review and meta-analysis.
Collapse
Affiliation(s)
- Jiaxuan Qin
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Jiaxuan Qin
| | - Yufeng Yang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xuan Zhuang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinchun Xing
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Jinchun Xing
| |
Collapse
|
5
|
Xing JS, Bai ZM. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci 2018; 194:120-129. [DOI: 10.1016/j.lfs.2017.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022]
|
6
|
Grasso C, Zugna D, Fiano V, Robles Rodriguez N, Maule M, Gillio-Tos A, Ciuffreda L, Lista P, Segnan N, Merletti F, Richiardi L. Subfertility and Risk of Testicular Cancer in the EPSAM Case-Control Study. PLoS One 2016; 11:e0169174. [PMID: 28036409 PMCID: PMC5201268 DOI: 10.1371/journal.pone.0169174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Background/objectives It has been suggested that subfertility and testicular cancer share genetic and environmental risk factors. We studied both subfertility and the strongest known testicular cancer susceptibility gene, the c-KIT ligand (KITLG), whose pathway is involved in spermatogenesis. Methods The EPSAM case-control study is comprised of testicular cancer patients from the Province of Turin, Italy, diagnosed between 1997 and 2008. The present analysis included 245 cases and 436 controls from EPSAM, who were aged 20 years or older at diagnosis/recruitment. The EPSAM questionnaire collected information on factors such as number of children, age at first attempt to conceive, duration of attempt to conceive, use of assisted reproduction techniques, physician-assigned diagnosis of infertility, number of siblings, and self-reported cryptorchidism. Genotyping of the KITLG single nucleotide polymorphism (SNP) rs995030 was performed on the saliva samples of 202 cases and 329 controls. Results Testicular cancer was associated with the number of children fathered 5 years before diagnosis (odds ratio (OR) per additional child: 0.78, 95% confidence interval (CI): 0.58–1.04) and sibship size (OR per additional sibling: 0.76, 95% CI: 0.66–0.88). When considering the reproductive history until 1 year before diagnosis, attempting to conceive for at least 12 months or fathering a child using assisted reproduction techniques was not associated with the risk of testicular cancer, nor was age at first attempt to conceive or physician-assigned diagnosis of infertility. The SNP rs995030 was strongly associated with risk of testicular cancer (per allele OR: 1.83; 95%CI: 1.26–2.64), but it did not modify the association between number of children and the risk of testicular cancer. Conclusion This study supports the repeatedly reported inverse association between number of children and risk of testicular cancer, but it does not find evidence of an association for other indicators of subfertility.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
- * E-mail:
| | - Daniela Zugna
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Nena Robles Rodriguez
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Milena Maule
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Anna Gillio-Tos
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Libero Ciuffreda
- Medical Oncology Division 1, University Hospital “Città della Salute e della Scienza”, Turin, Italy
| | - Patrizia Lista
- Medical Oncology Division 1, University Hospital “Città della Salute e della Scienza”, Turin, Italy
| | - Nereo Segnan
- Department of Cancer Screening and Unit of Cancer Epidemiology, WHO Collaborative Center for Cancer Early Diagnosis and Screening, CPO Piedmont and University Hospital “Città della Salute e della Scienza”, Turin, Italy
| | - Franco Merletti
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit-CeRMS, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| |
Collapse
|
7
|
Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol Rev 2016; 96:55-97. [PMID: 26582516 DOI: 10.1152/physrev.00017.2015] [Citation(s) in RCA: 610] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography.
Collapse
Affiliation(s)
- Niels E Skakkebaek
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Germaine M Buck Louis
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Jorma Toppari
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Michael L Eisenberg
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Shanna H Swan
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Katherine J Sapra
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Søren Ziebe
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Lærke Priskorn
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Physiology & Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Male Reproductive Medicine & Surgery Program, Stanford University, Stanford, California; Icahn School of Medicine at Mount Sinai, New York, New York; and The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Sanchez A, Amatruda JF. Zebrafish Germ Cell Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:479-94. [PMID: 27165367 DOI: 10.1007/978-3-319-30654-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs.
Collapse
Affiliation(s)
- Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
CMTM3 is reduced in prostate cancer and inhibits migration, invasion and growth of LNCaP cells. Clin Transl Oncol 2015; 17:632-9. [DOI: 10.1007/s12094-015-1288-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
10
|
Koster R, Mitra N, D'Andrea K, Vardhanabhuti S, Chung CC, Wang Z, Loren Erickson R, Vaughn DJ, Litchfield K, Rahman N, Greene MH, McGlynn KA, Turnbull C, Chanock SJ, Nathanson KL, Kanetsky PA. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum Mol Genet 2014; 23:6061-8. [PMID: 24943593 PMCID: PMC4204765 DOI: 10.1093/hmg/ddu305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.
Collapse
Affiliation(s)
- Roelof Koster
- Translational Medicine and Human Genetics, Department of Medicine
| | | | - Kurt D'Andrea
- Translational Medicine and Human Genetics, Department of Medicine
| | | | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - R Loren Erickson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA and
| | - David J Vaughn
- Division of Hematology-Oncology, Department of Medicine and, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Litchfield
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Nathanson
- Translational Medicine and Human Genetics, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Biostatistics and Epidemiology, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,
| |
Collapse
|
11
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Li Z, Xie J, Wu J, Li W, Nie L, Sun X, Tang A, Li X, Liu R, Mei H, Wang F, Wang Z, Gui Y, Cai Z. CMTM3 inhibits human testicular cancer cell growth through inducing cell-cycle arrest and apoptosis. PLoS One 2014; 9:e88965. [PMID: 24586462 PMCID: PMC3938458 DOI: 10.1371/journal.pone.0088965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/16/2014] [Indexed: 01/05/2023] Open
Abstract
Human CMTM3 has been proposed as a putative tumor suppressor gene. The loss of CMTM3 has been found in several carcinomas. However, the regulation of CMTM3 expression and its function in tumor progression remain largely unknown. Here, we investigated the regulation of CMTM3 expression, function and molecular mechanism in human testicular cancer cells. CMTM3 was frequently downregulated or silenced in testicular cancer cell lines and tumor tissues but highly expressed in normal testis tissues. The re-expression of CMTM3 significantly suppressed the colony formation, proliferation, and migration capacity of testicular cancer cells by inducing a G2 cell cycle arrest and apoptosis. Moreover, the re-expression of CMTM3 activated the transcription of p53, induced p53 accumulation, up-regulated the expression of p21, and increased the cleavage of caspase 9, 8, 3, and PARP. The downregulation of CMTM3 in clinical tumor tissues was associated with the methylation of a single CpG site located within the Sp1/Sp3-responsive region of the core promoter. These results indicate that CMTM3 can function as tumor suppressor through the induction of a G2 cell cycle arrest and apoptosis. CMTM3 is thus involved in testicular cancer pathogenesis, and it is frequently at least partially silenced by the methylation of a single, specific CpG site in tumor tissues.
Collapse
Affiliation(s)
- Zesong Li
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- * E-mail: (ZL); (ZC)
| | - Jun Xie
- Guandong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianting Wu
- Guandong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Wenjie Li
- Department of Urology, Suzhou municipal Hospital, Suzhou, Anhui, China
| | - Liping Nie
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaojuan Sun
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianxin Li
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ren Liu
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yaoting Gui
- Guandong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- * E-mail: (ZL); (ZC)
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To discuss several important developments in the diagnosis, management, and risk stratification of testicular germ cell tumors (TGCTs) in the past year. RECENT FINDINGS Germ cell function and tumorigenesis may be influenced by exposure to a variety of agents, including metals and cannabinoids. Genome-wide association studies have identified variants in several genes that may produce susceptibility to the development of testicular malignancies, and expression of certain proteins predicts a poorer prognosis and may, thus, play a role in neoplastic progression. Retroperitoneal lymph node dissection continues to play a crucial role in definitive treatment of patients with nonseminoma germ cell tumor, whereas radiotherapy, as a standard treatment for early-stage seminoma, has been declining due both to the efficacy of platinum-based chemotherapy and to the increased risk of radiation-related secondary malignancies. Advanced and platinum-refractory disease states continue to be challenging entities in terms of optimizing therapy and outcome. SUMMARY Preclinical and clinical studies continue to enhance our insights into the complex biology of TGCTs, and are helping to further refine risk stratification and optimize treatment of patients with TGCTs.
Collapse
|
14
|
Karlsson R, Andreassen KE, Kristiansen W, Aschim EL, Bremnes RM, Dahl O, Fosså SD, Klepp O, Langberg CW, Solberg A, Tretli S, Magnusson PK, Adami HO, Haugen TB, Grotmol T, Wiklund F. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum Mol Genet 2013; 22:3373-80. [DOI: 10.1093/hmg/ddt188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
McIver SC, Roman SD, Nixon B, Loveland KL, McLaughlin EA. The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. F1000Res 2013; 2:55. [PMID: 24555040 PMCID: PMC3901536 DOI: 10.12688/f1000research.2-55.v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 12/11/2022] Open
Abstract
Since the beginning of the 20th century there has been a decline in the reproductive vitality of men within the Western world. The declining sperm quantity and quality has been associated with increased overt disorders of sexual development including hypospadias, undescended testes and type II testicular germ cell tumours (TGCTs). The increase in TGCTs cannot be accounted for by genetic changes in the population. Therefore exposure to environmental toxicants appears to be a major contributor to the aetiology of TGCTs and men with a genetic predisposition are particularly vulnerable. In particular, Type II TGCTs have been identified to arise from a precursor lesion Carcinoma
in situ (CIS), identified as a dysfunctional gonocyte; however, the exact triggers for CIS development are currently unknown. Therefore the transition from gonocytes into spermatogonia is key to those studying TGCTs. Recently we have identified seven miRNA molecules (including members of the miR-290 family and miR-136, 463* and 743a) to be significantly changed over this transition period. These miRNA molecules are predicted to have targets within the CXCR4, PTEN, DHH, RAC and PDGF pathways, all of which have important roles in germ cell migration, proliferation and homing to the spermatogonial stem cell niche. Given the plethora of potential targets affected by each miRNA molecule, subtle changes in miRNA expression could have significant consequences e.g. tumourigenesis. The role of non-traditional oncogenes and tumour suppressors such as miRNA in TGCT is highlighted by the fact that the majority of these tumours express wild type p53, a pivotal tumour suppressor usually inactivated in cancer. While treatment of TGCTs is highly successful, the impact of these treatments on fertility means that identification of exact triggers, earlier diagnosis and alternate treatments are essential. This review examines the genetic factors and possible triggers of type II TGCT to highlight target areas for potential new treatments.
Collapse
Affiliation(s)
- Skye C McIver
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Shaun D Roman
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Brett Nixon
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Kate L Loveland
- Department of Biochemistry & Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, 3800, Australia ; Department of Anatomy & Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, 3800, Australia
| | - Eileen A McLaughlin
- ARC Centre of Excellence in Biotechnology & Development, School of Environmental & Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|