1
|
Anwer MS, El-Sayed WM. Exploring Tephrosin: A review of its potential in cancer therapy and multifaceted anticancer mechanisms. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:320-328. [DOI: 10.1016/j.sajb.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Zhang D, Zhang B. cGAS/STING signaling pathway in gynecological malignancies: From molecular mechanisms to therapeutic values. Front Immunol 2025; 16:1525736. [PMID: 39949780 PMCID: PMC11821648 DOI: 10.3389/fimmu.2025.1525736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Gynecological cancers, including cervical, ovarian, and endometrial malignancies, remain a significant global health burden, exacerbated by disparities in access to preventive measures such as HPV vaccination and routine screening. The cGAS/STING signaling pathway, a pivotal mechanism in innate immunity, detects cytosolic DNA from pathogens or cellular damage, triggering immune responses via type I interferons and inflammatory cytokines. This pathway's dual role in gynecological cancers, either promoting antitumor immunity or facilitating tumor immune evasion, makes it a compelling target for innovative therapies. The article outlines cGAS/STING's influence on tumor microenvironments, immune surveillance, and inflammation, with emphasis on molecular mechanisms driving cancer progression. It explores interactions between DNA damage response pathways and immune modulation, highlighting the impact of cGAS/STING activation or suppression in ovarian, cervical, and endometrial cancers. The therapeutic potential of STING agonists, PARP inhibitors, and targeted immunotherapies is reviewed, demonstrating how these approaches can boost immune responses, counteract chemotherapy resistance, and improve patient outcomes. The study also discusses strategies for leveraging cGAS/STING signaling to enhance the efficacy of immunotherapies and address tumor-mediated immune suppression, providing insights into future directions for personalized cancer treatments.
Collapse
Affiliation(s)
| | - Bingxue Zhang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Sun JN, Li Y, Luan M, Wu L, Liu FH, Li YZ, Xu HL, Wei YF, Xiao Q, Li XY, Xu J, Liu KX, Huang DH, Wu QJ, Gong TT. Pre- and post-polyphenol intake and ovarian cancer survival: evidence from a prospective cohort study. Eur J Nutr 2024; 64:14. [PMID: 39567373 DOI: 10.1007/s00394-024-03516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Although (poly)phenols have shown potential in anti-cancer activities, their impact on improving ovarian cancer (OC) survival remains unknown. Therefore, we aim to first investigate the association between dietary polyphenol intake and OC survival, providing valuable insights into potential interventions. METHODS The prospective cohort recruited 560 patients with OC to assess the associations of polyphenol intake, not only pre- and post-diagnosis but also the change from pre- to post-diagnosis with OC survival. Dietary intakes of total (poly)phenols and their five classes (flavonoids, phenolic acids, lignans, stilbenes, and other polyphenols) were assessed using a validated 111-item food frequency questionnaire. Overall survival (OS) was tracked through active follow-up and medical records until February 16th, 2023. Cox proportional hazard regression models were applied to calculate the hazard ratios (HR) and 95% confidence intervals (CI). RESULTS During a median follow-up of 44.4 months, 211 all-cause deaths were identified. We observed significant associations between higher polyphenol intake with lower risk of mortality among patients with OC ((HR T3 vs. T1 = 0.55, 95%CI = 0.35-0.87 for pre-diagnosis; and HR T3 vs. T1 = 0.59, 95%CI = 0.39-0.90 for post-diagnosis). Consistently, an evident linear trend was observed for polyphenol and flavonoid intake with OC survival. Of note, compared to the stable group (change within 10%), the decreased intake (change of more than 10%) of total (poly)phenols and five polyphenol classes was significantly associated with worse OS. CONCLUSION Dietary (poly)phenols, as well as its five classes, have an inverse association with OC survival.
Collapse
Affiliation(s)
- Jia-Nan Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Meng Luan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Xiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Hospital Management Office, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Sijisha KS, Anusha R, Priya S. Synergistic effects of epoxyazadiradione (EAD) and paclitaxel against triple-negative breast cancer cells. Fundam Clin Pharmacol 2024; 38:758-766. [PMID: 38482560 DOI: 10.1111/fcp.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive and chemo-resistant form of breast cancer subtype, and chemotherapy is a vital treatment option for that. Paclitaxel is an effective chemo drug for TNBC. However, in clinical settings, paclitaxel has adverse side effects. The synergistic combination is the most promising method for overcoming undesirable toxicity and achieving a beneficial therapeutic outcome. Previous reports, including our study, showed certain anticancer potential of epoxyazadiradione (EAD), the neem limonoid, in different types of cancer cells, including TNBC. OBJECTIVE This study was designed to investigate the possible synergistic effects of EAD and paclitaxel against TNBC cells. METHODS We examined the effects of EAD and paclitaxel alone and in combination in MDA-MB 231 cells, and the percentage cytotoxicity was used to calculate synergism. Characteristic apoptotic changes were observed by visualizing cellular morphology, nuclear fragmentation and membrane integrity. We further estimated anti-migratory potential of experimental compounds by wound healing assay. The reduction in inflammation during combinatorial treatment was evaluated by observing NF-κB translocation. RESULTS The combined treatment with EAD (5 μM) and paclitaxel (5 nM), which were used at doses lower than their individual IC50 concentrations, showed a synergistic effect in MDA-MB-231 cells. This combination effectively induced apoptosis and antimigration and reduced the inflammatory reactions induced by the higher dose of paclitaxel. CONCLUSION To conclude, EAD could be the drug of choice for combined treatment with paclitaxel in a chemotherapy regimen.
Collapse
Affiliation(s)
- Kunnathully Sudhan Sijisha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Rajitha Anusha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Chen R, Lo HH, Yang C, Law BYK, Chen X, Lam CCI, Ho C, Cheong HL, Li Q, Zhong C, Ng JPL, Peter CKF, Wong VKW. Natural small-molecules reverse Xeroderma Pigmentosum Complementation Group C (XPC) deficient-mediated drug-resistance in renal cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155310. [PMID: 38215574 DOI: 10.1016/j.phymed.2023.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Renal cancer is insensitive to radiotherapy or most chemotherapies. While the loss of the XPC gene was correlated with drug resistance in colon cancer, the expression of XPC and its role in the drug resistance of renal cancer have not yet been elucidated. With the fact that natural small-molecules have been adopted in combinational therapy with classical chemotherapeutic agents to increase the drug sensitivity and reduce adverse effects, the use of herbal compounds to tackle drug-resistance in renal cancer is advocated. PURPOSE To correlate the role of XPC gene deficiency to drug-resistance in renal cancer, and to identify natural small-molecules that can reverse drug-resistance in renal cancer via up-regulation of XPC. METHODS IHC was adopted to analyze the XPC expression in human tumor and adjacent tissues. Clinical data extracted from The Cancer Genome Atlas (TCGA) database were further analysed to determine the relationship between XPC gene expression and tumor staging of renal cancer. Two types of XPC-KD renal cancer cell models were established to investigate the drug-resistant phenotype and screen XPC gene enhancers from 134 natural small-molecules derived from herbal plants. Furthermore, the identified XPC enhancers were verified in single or in combination with FDA-approved chemotherapy drugs for reversing drug-resistance in renal cancer using MTT cytotoxicity assay. Drug resistance gene profiling, ROS detection assay, immunocytochemistry and cell live-dead imaging assay were adopted to characterize the XPC-related drug resistant mechanism. RESULTS XPC gene expression was significantly reduced in renal cancer tissue compared with its adjacent tissue. Clinical analysis of TCGA database also identified the downregulated level of XPC gene in renal tumor tissue of stage IV patients with cancer metastasis, which was also correlated with their lower survival rate. 6 natural small-molecules derived from herbal plants including tectorigenin, pinostilbene, d-pinitol, polygalasaponin F, atractylenolide III and astragaloside II significantly enhanced XPC expression in two renal cancer cell types. Combinational treatment of the identified natural compound with the treatment of FDA-approved drug, further confirmed the up-regulation of XPC gene expression can sensitize the two types of XPC-KD drug-resistant renal cancer cells towards the FDA-approved drugs. Mechanistic study confirmed that GSTP1/ROS axis was activated in drug resistant XPC-KD renal cancer cells. CONCLUSION XPC gene deficiency was identified in patient renal tumor samples, and knockdown of the XPC gene was correlated with a drug-resistant phenotype in renal cancer cells via activation of the GSTP1/ROS axis. The 6 identified natural small molecules were confirmed to have drug sensitizing effects via upregulation of the XPC gene. Therefore, the identified active natural small molecules may work as an adjuvant therapy for circumventing the drug-resistant phenotype in renal cancer via enhancement of XPC expression.
Collapse
Affiliation(s)
- Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenxu Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Calista Chi In Lam
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Charles Ho
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Hio Lam Cheong
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Qianzi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenyu Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jerome Pak Lam Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
6
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
7
|
Kim HS, Bae S, Lim YJ, So KA, Kim TJ, Bae S, Lee JH. Tephrosin Suppresses the Chemoresistance of Paclitaxel-Resistant Ovarian Cancer via Inhibition of FGFR1 Signaling Pathway. Biomedicines 2023; 11:3155. [PMID: 38137377 PMCID: PMC10740824 DOI: 10.3390/biomedicines11123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic cancers. Paclitaxel is used as a standard first-line therapeutic agent for ovarian cancer. However, chemotherapeutic resistance and high recurrence rates are major obstacles to treating ovarian cancer. We have found that tephrosin, a natural rotenoid isoflavonoid, can resensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. Cell viability, immunoblotting, and a flow cytometric analysis showed that a combination treatment made up of paclitaxel and tephrosin induced apoptotic death. Tephrosin inhibited the phosphorylation of AKT, STAT3, ERK, and p38 MAPK, all of which simultaneously play important roles in survival signaling pathways. Notably, tephrosin downregulated the phosphorylation of FGFR1 and its specific adapter protein FRS2, but it had no effect on the phosphorylation of the EGFR. Immunoblotting and a fluo-3 acetoxymethyl assay showed that tephrosin did not affect the expression or function of P-glycoprotein. Additionally, treatment with N-acetylcysteine did not restore cell cytotoxicity caused by a treatment combination made up of paclitaxel and tephrosin, showing that tephrosin did not affect the reactive oxygen species scavenging pathway. Interestingly, tephrosin reduced the expression of the anti-apoptotic factor XIAP. This study demonstrates that tephrosin is a potent antitumor agent that can be used in the treatment of paclitaxel-resistant ovarian cancer via the inhibition of the FGFR1 signaling pathway.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| |
Collapse
|
8
|
He M, Yasin K, Yu S, Li J, Xia L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. Int J Mol Sci 2023; 24:16348. [PMID: 38003540 PMCID: PMC10671751 DOI: 10.3390/ijms242216348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
To overcome the shortcomings of traditional extraction methods, such as long extraction time and low efficiency, and considering the low content and high complexity of total flavonoids in Artemisia absinthium L., in this experiment, we adopted ultrasound-assisted enzymatic hydrolysis to improve the yield of total flavonoids, and combined this with molecular docking and network pharmacology to predict its core constituent targets, so as to evaluate its antitumor activity. The content of total flavonoids in Artemisia absinthium L. reached 3.80 ± 0.13%, and the main components included Astragalin, Cynaroside, Ononin, Rutin, Kaempferol-3-O-rutinoside, Diosmetin, Isorhamnetin, and Luteolin. Cynaroside and Astragalin exert their cervical cancer inhibitory functions by regulating several signaling proteins (e.g., EGFR, STAT3, CCND1, IGFIR, ESR1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the anticancer activity of both compounds was associated with the ErbB signaling pathway and FoxO signaling pathway. MTT results showed that total flavonoids of Artemisia absinthium L. and its active components (Cynaroside and Astragalin) significantly inhibited the growth of HeLa cells in a concentration-dependent manner with IC50 of 396.0 ± 54.2 μg/mL and 449.0 ± 54.8 μg/mL, respectively. Furthermore, its active components can mediate apoptosis by inducing the accumulation of ROS.
Collapse
Affiliation(s)
| | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| |
Collapse
|
9
|
Fang X, Li J, Zhang M, Yang L, Wang Y, Liu X, Zhang J. Pharmacokinetic investigation on the mechanism of interaction of anti-breast cancer calycosin with albumin: In vitro. ARAB J CHEM 2023; 16:105175. [DOI: 10.1016/j.arabjc.2023.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Chen C, Li X, Kano Y, Yuan D, Qu J. Oriental traditional herbal Medicine--Puerariae Flos: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116089. [PMID: 36621660 DOI: 10.1016/j.jep.2022.116089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria Flos (PF), a traditional herbal medicine, is botanically from the dried flowers of Pueraria lobate (Willd.) Ohwi. (Chinese: ) or Pueraria thomsonii Benth. (Chinese: ). It has a long history of thousands of years in China for awakening the spleen, clearing the lungs, relieving alcohol. AIM OF THE REVIEW This review aims to report the up-to-date research progress in ethnopharmacology, phytochemistry, pharmacology and toxicology, metabolism and therapeutic application of PF, so as to provide a strong basis for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on PF was collected from scientific literature databases including PubMed, CNKI and other literature sources (Ph.D. and M.Sc. dissertations and Chinese herbal classic books) by using the keyword "Puerariae". RESULTS Briefly, phytochemical research report has isolated 39 flavonoids, 19 saponins and 25 volatile oils from PF. Flavonoids and saponins are the most important bioactive compounds, and most of the quality control studies focus on these two types of compounds. Modern pharmacological studies have revealed their significant biological activities in relieving alcoholism, hepatoprotective, anti-tumor, anti-inflammatory, and anti-oxidation, which provides theoretical support for the traditional use. CONCLUSIONS Comprehensive analysis showed that pharmacological activity of most purified compounds from PF had not been reported. Kakkalide, tectoridin and their deglycosylated metabolites (irisolidone and tectorigenin) has been focused on excessively due to their higher content and better activities. This leads to low development and resources waste. Interestingly, PF made a breakthrough in the field of food. Many kinds of fat-lowering foods such as PILLBOX Onaka have been popular in Japan market, which received extensive attention. Therefore, we suggest that future research can be paid attention on the development of the plant's function in the field of food and medicine, as well as the transformation from experimental to clinical.
Collapse
Affiliation(s)
- Cai Chen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Xiaojie Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
12
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
13
|
Chemical Constituents of the Flowers of Pueraria lobata and Their Cytotoxic Properties. PLANTS 2022; 11:plants11131651. [PMID: 35807603 PMCID: PMC9269118 DOI: 10.3390/plants11131651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The flower of Pueraria lobata (Puerariae Flos) is a reddish-purple to violet-purple flower that blooms between July and September. In our preliminary study, Puerariae Flos extract exhibited significant activity against a human ovarian cancer cell line. This research aims to identify the active compounds in Pueraria Flos. By repeated chromatography, one new tryptophan derivative (1), two new flavanones (4 and 5), and 19 known compounds, including tryptophan derivatives (2 and 3), flavonoids (6–9), isoflavonoids (10–20), a flavonolignan (21), and a phenolic compound (22), were isolated from a methanol extract of Puerariae Flos. The structures of new compounds were elucidated as 13-N-benzoyl-l-tryptophan-1-N-β-d-glucopyranoside (1), 2-hydroxy-5-methoxy-naringenin (4), and 2-hydroxy-5-methoxy-naringenin 7-O-β-d-glucopyranoside (5). Among the isolates, afromosin (17), tectorigenin (11), apigenin (8), glycitein (16), (-)-hydnocarpin (21), irilin D (12), irisolidone 7-O-glucoside (14), and genistein (10) showed cytotoxicity against human ovarian cancer cell line A2780. Apigenin (8) and (-)-hydnocarpin (21) were the most active (IC50 values of 9.99 and 7.36 μM, respectively).
Collapse
|
14
|
Enhancing the anticancer effect of paclitaxel by using polymeric nanoparticles decorated with colorectal cancer targeting CPKSNNGVC-peptide. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Aytatli A, Barlak N, Sanli F, Caglar HO, Gundogdu B, Tatar A, Ittmann M, Karatas OF. AZD4547 targets the FGFR/Akt/SOX2 axis to overcome paclitaxel resistance in head and neck cancer. Cell Oncol (Dordr) 2021; 45:41-56. [PMID: 34837170 DOI: 10.1007/s13402-021-00645-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Development of chemoresistance is one of the major obstacles to the treatment of head and neck squamous cell carcinoma (HNSCC). The PI3K/Akt pathway, involved in drug resistance, has been found to be overactivated in > 90% of HNSCCs. Aberrant activation of the FGF receptors (FGFRs) has been reported to cause overactivation of the PI3K/Akt pathway and to be associated with the maintenance of stem cell features, which is controlled via SOX2 expression. In this study, we aimed at investigating the potential of using AZD4547, an orally bioavailable FGFR inhibitor, to overcome taxol-resistance by targeting the FGFR/Akt/SOX2 axis in HNSCC. METHODS We initially evaluated FGFR2 and SOX2 expression using in silico tools. We analyzed the FGFR/Akt/SOX2 axis in normal/tumor tissue pairs and in recombinant FGF2 treated HNSCC cells. Next, we explored the effects of AZD4547 alone and in combination with taxol on the proliferation, migration and colony forming capacities of parental/taxol-resistant cells using in vitro models. RESULTS We found that the p-FGFR, p-AKT, p-GSK-3β and SOX2 expression levels were higher in tumor tissues than in its corresponding normal tissues, and that AZD4547 effectively suppressed the expression of FGFR and its downstream targets in recombinant FGF2 treated HNSCC cells. We also found that AZD4547 diminished the viability, migration and colony forming capacity of HNSCC cells, and that co-treatment with taxol potentiated the impact of taxol on these cells. Finally, we found that AZD4547 inhibited the overexpressed FGFR/Akt/SOX2 axis and profoundly suppressed cancer-related phenotypes in taxol-resistant HNSCC cells. CONCLUSION From our data we conclude that AZD4547 may increase the impact of taxol during HNSCC treatment. We suggest AZD4547 as a therapeutic agent to overcome taxol-resistance.
Collapse
Affiliation(s)
- Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
16
|
Dan VM, Raveendran RS, Baby S. Resistance to Intervention: Paclitaxel in Breast Cancer. Mini Rev Med Chem 2021; 21:1237-1268. [PMID: 33319669 DOI: 10.2174/1389557520999201214234421] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Reji Saradha Raveendran
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
18
|
Sak K. Role of semisynthetic flavonoids on cytotoxic chemotherapy—Dual benefit to cancer patients? Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tectorigenin Inhibits Glioblastoma Proliferation by G0/G1 Cell Cycle Arrest. ACTA ACUST UNITED AC 2020; 56:medicina56120681. [PMID: 33321738 PMCID: PMC7763962 DOI: 10.3390/medicina56120681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
Background and objectives: Glioblastoma is one of the leading cancer-related causes of death of the brain region and has an average 5-year survival rate of less than 5%. The aim of this study was to investigate the effectiveness of tectorigenin, a naturally occurring flavonoid compound with anti-inflammatory, anti-oxidant, and anti-tumor properties, as a treatment for glioblastoma. A further goal was to use in vitro models to determine the underlying molecular mechanisms. Materials and Methods: Exposure to tectorigenin for 24 h dose-dependently reduced the viability of glioblastoma cells. Results: Significant cell cycle arrest at G0/G1 phase occurred in the presence of 200 and 300 µM tectorigenin. Treatment with tectorigenin clearly reduced the levels of phosphorylated retinoblastoma protein (p-RB) and decreased the expression of cyclin-dependent protein 4 (CDK4). Tectorigenin treatment also significantly enhanced the expression of p21, a CDK4 inhibitor. Conclusions: Collectively, our findings indicated that tectorigenin inhibited the proliferation of glioblastoma cells by cell cycle arrest at the G0/G1 phase.
Collapse
|
20
|
Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102309. [PMID: 32992019 DOI: 10.1016/j.nano.2020.102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Due to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance. Drug resistance has been linked to many mechanisms, including efflux transporters, apoptosis dysregulation, autophagy, cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Thus, developing and choosing effective therapies is exceptionally complex. There is a need for increased specificity and efficacy in therapies for drug-resistant ovarian cancer, and research in targeted nanoparticle delivery systems aims to fulfill this challenge. Although recent research has focused on targeted nanoparticle-based therapies, few of these therapies have been clinically translated. In this review, non-viral nanoparticle delivery systems developed to overcome drug-resistance in ovarian cancer were analyzed, including their structural components, surface modifications, and drug-resistance targeted mechanisms.
Collapse
Affiliation(s)
- Emily M Miller
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | - Timothy M Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | | |
Collapse
|
21
|
Cheng HH, Liang WZ, Liao WC, Kuo CC, Hao LJ, Chou CT, Jan CR. Investigation of effect of tectorigenin (O-methylated isoflavone) on Ca 2+ signal transduction and cytotoxic responses in canine renal tubular cells. CHINESE J PHYSIOL 2020; 63:60-67. [PMID: 32341231 DOI: 10.4103/cjp.cjp_14_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tectorigenin, a traditional Chinese medicine, is isolated from the flower of plants such as Pueraria thomsonii Benth. It is an O-methylated isoflavone, a type of flavonoid. Previous studies have shown that tectorigenin evoked various physiological responses in different models, but the effect of tectorigenin on cytosolic-free Ca2+ levels ([Ca2+]i) and cytotoxicity in renal tubular cells is unknown. Our research explored if tectorigenin changed Ca2+ signal transduction and viability in Madin-Darby Canine Kidney (MDCK) renal tubular cells. [Ca2+]iin suspended cells were measured by applying the fluorescent Ca2+-sensitive probe fura-2. Viability was explored by using water-soluble tetrazolium-1 as a fluorescent dye. Tectorigenin at concentrations of 5-50 μM induced [Ca2+]irises. Ca2+ removal reduced the signal by approximately 20%. Tectorigenin (50 μM) induced Mn2+ influx suggesting of Ca2+ entry. Tectorigenin-induced Ca2+ entry was inhibited by 10% by three inhibitors of store-operated Ca2+ channels, namely, nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin inhibited 83% of tectorigenin-evoked [Ca2+]irises. Conversely, treatment with tectorigenin abolished thapsigargin-evoked [Ca2+]irises. Inhibition of phospholipase C with U73122 inhibited 50% of tectorigenin-induced [Ca2+]irises. Tectorigenin at concentrations between 10 and 60 μM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis (2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl did not reverse tectorigenin's cytotoxicity. Our data suggest that, in MDCK cells, tectorigenin evoked [Ca2+]irises and induced cell death that was not associated with [Ca2+]irises. Therefore, tectorigenin may be a Ca2+-independent cytotoxic agent for kidney cells.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung; Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Wei-Chuan Liao
- Department of Surgery, Kaohsiung Veterans General Hospital; Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Lyh-Jyh Hao
- Department of Endocrinology and Metabolism, Kaohsiung Veterans General Hospital Tainan Branch; Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi Campus; Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital Chiayi Branch, Puzi City, Chiayi County, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Liu S, Wang J, Zhang J, Wang T, Zhou Y, Lv Q, Hu N, Shen X, Deng X. Tectorigenin reduces type IV pilus-dependent cell adherence in Clostridium perfringens. FEMS Microbiol Lett 2020; 366:5498297. [PMID: 31125043 DOI: 10.1093/femsle/fnz112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals around the globe. The type IV pilus (TFP) system plays a key role in the colonization and invasion of host cells, biofilm formation and gliding motility, which is vital for C. perfringens infection. Therefore, targeting TFP function may be a promising strategy for the treatment of C. perfringens infection. Here, we investigated the potential inhibitory effects of tectorigenin (TE), an isoflavone extracted from the rhizome of the Chinese herb Belamcanda chinensis (L.) DC, on gliding motility, biofilm formation, adherence to cells and antibacterial activity of C. perfringens. Tectorigenin significantly inhibited gliding motility, biofilm formation and adherence to Caco-2 cells without observable antibacterial activity against C. perfringens. In addition, we also demonstrated that the inhibitory effect of TE on TFP function appears to be partially achieved by the suppression of TFP-associated genes. These findings demonstrate that TE may have the potential to be developed as a new anti-virulence drug for C. perfringens infection, particularly for the targeting of TFP.
Collapse
Affiliation(s)
- Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qianghua Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Naiyu Hu
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xue Shen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
23
|
Li X, Guo S, Xiong XK, Peng BY, Huang JM, Chen MF, Wang FY, Wang JN. Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. J Cancer 2019; 10:4509-4521. [PMID: 31528215 PMCID: PMC6746132 DOI: 10.7150/jca.31045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
While cisplatin is a first-line chemotherapeutic drug commonly used to treat patients with oral squamous cell carcinoma (OSCC), the cisplatin-resistance poses a major challenge for its clinical application. Recent studies have shown that quercetin, a natural flavonoid found in various plants and foods possesses an anti-cancer effect. The following study examined the combined effect of quercetin and cisplatin on OSCC apoptosis in vitro and in vivo (using a mice tumor model). We found that quercetin promotes cisplatin-induced apoptosis in human OSCC (cell lines Tca-8113 and SCC-15) by down-regulating NF-κB. Pretreatment of cancer cells with quercetin inhibited the phosphorylation Akt and IKKβ, and led to the suppression of NF-κB and anti-apoptotic protein xIAP. In addition, we observed that the pretreatment of cancer cells with quercetin improves extrinsic and intrinsic apoptosis by activating caspase-8 and caspase-9, respectively. Our in vivo data also indicated that the combination of quercetin and cisplatin may inhibit the xenograft growth in mice. To sum up, our results provide a new evidence for the application of quercetin and cisplatin in OSCC therapy.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Shu Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, Guangdong Province, P.R. China, 510655
| | - Xi-Kun Xiong
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Bao-Ying Peng
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Jun-Ming Huang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Mei-Fen Chen
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Feng-Yan Wang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Jian-Ning Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56, Ling Yuan Xi Road, Guangzhou, Guangdong Province, P.R. China, 510055
| |
Collapse
|
24
|
Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem Biophys Res Commun 2019; 517:155-163. [PMID: 31353084 DOI: 10.1016/j.bbrc.2019.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive deterioration of articular cartilage. There have been reports that small molecule inhibitors have anti-osteoarthritis effects; however, the effects of 3-(4-chloro-2-fluorophenyl)-6-(2,4-difluorophenyl)-2H-benzo[e] [1,3]oxazine-2,4(3H)-dione (Cm-02) and 6-(2,4-difluorophenyl)-3-(3,4-difluorophenyl)-2H-benzo[e] [1,3]oxazine-2,4(3H)-dione (Ck-02), small molecule inhibitors which share many structural similarities with quercetin (a potent anti-inflammatory flavonoid), remain unclear. In this study, TNF-α-stimulated porcine and human chondrocyte models were used to investigate the inhibitory effects of Cm-02 and Ck-02 on the molecular mechanisms underlying the anti-OA effects. TNF-α was used to stimulate porcine and human chondrocytes to mimic immunomodulatory potency in-vitro. Anti-osteoarthritic effects were characterized in terms of protein and mRNA levels associated with the pathogenesis of OA. We also examined (1) the inducible nitric oxide synthase (iNOS)-nitric oxide (NO) system in cultured chondrocytes, (2) matrix metalloproteinases (MMPs) in cultured chondrocytes, and (3) aggrecan degradation in cartilage explants. Finally, we tested the activation of nuclear factor-kappaB (NF-κB), interferon regulatory factor-1 (IRF-1), and activate the protein-1 (AP-1), and we tested the signal transduction and activation of transcription-3 (STAT-3). Our results indicate that, in chondrocytes, Cm-02 and Ck-02 inhibit TNF-α induced NO production, iNOS, MMP, the expression of disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the enzyme activity of MMP-13. Furthermore, both Cm-02 and Ck-02 were found to stimulate TNF-α, which has been shown to suppress the activation of several transcription factors, including NF-κB, STAT-3, and IRF-1 in porcine and human chondrocytes. Cm-02 and Ck-02 were also found to help prevent the release of proteoglycans from cartilage explants. Our findings demonstrate that both Cm-02 and Ck-02 have potent anti-inflammatory activities and the ability to protect cartilage in an OA cell model. These findings indicate that Cm-02 and Ck-02 have the potential to be further developed for the therapeutic treatment of OA.
Collapse
|
25
|
Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang RW. Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids. Front Oncol 2019; 9:487. [PMID: 31245292 PMCID: PMC6581719 DOI: 10.3389/fonc.2019.00487] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) resulting from different defensive mechanisms in cancer is one of the major obstacles of clinical treatment. To circumvent MDR many reversal agents have been developed, but most of them fail in clinical trials due to severely adverse effects. Recently, certain natural products have been reported to overcome MDR, including flavonoids which are abundant in plants, foods, and herbs. The structure of flavonoids can be abbreviated as C6-C3-C6 (C for carbon), and further categorized into flavonoids, iso-flavonoids and neo-flavonoids, according to their structural backbones. Flavonoids possess multiple bioactivities, and a growing body of research has indicated that both flavonoids and iso-flavonoids can either kill or re-sensitize conventional chemotherapeutics to resistant cancer cells. Here, we summarize the research and discuss the underlying mechanisms, concluding that these flavonoids do not function as specific regulators of target proteins, but rather as multi-functional agents that negatively regulate the key factors contributing to MDR.
Collapse
Affiliation(s)
| | - Kai Liu
- Hainan General Hospital, Haikou, China
| | - Qun Shen
- Hainan General Hospital, Haikou, China
| | | | - Jinghui Hao
- Jiaozuo Second People's Hospital, Jiaozuo, China
| | | | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Zhang L, Zhao Y, Fan L, Xu K, Ji F, Xie Z, Ouyang X, Wu D, Li L. Tectorigenin protects against experimental fulminant hepatic failure by regulating the TLR4/mitogen-activated protein kinase and TLR4/nuclear factor-κB pathways and autophagy. Phytother Res 2019; 33:1055-1064. [PMID: 30701601 PMCID: PMC6590665 DOI: 10.1002/ptr.6299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Tectorigenin has received attention due to its antiproliferation, anti-inflammatory, and antioxidant activities. In this study, we investigated the effects of tectorigenin on lipopolysaccharide (LPS)/D-galactosamine(D-GalN)-induced fulminant hepatic failure (FHF) in mice and LPS-stimulated macrophages (RAW 264.7 cells). Pretreatment with tectorigenin significantly reduced the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histological injury, apoptosis, and the mortality of FHF mice, by suppressing the production of inflammatory cytokines such as TNF-α and IL-6. Tectorigenin also suppressed the activation of the inflammatory response in LPS-stimulated RAW 264.7 cells. Tectorigenin-induced protection is mediated through its mitigation of TLR4 expression, inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathway activation, and promotion of autophagy in FHF mice and LPS-stimulated RAW 264.7 cells. Therefore, tectorigenin has therapeutic potential for FHF in mice via the regulation of TLR4/MAPK and TLR4/NF-κB pathways and autophagy.
Collapse
Affiliation(s)
- Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Linxiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Kai Xu
- Department of Orthopaedic Surgery, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Daxian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
27
|
Ma C, Xu K, Meng J, Ran J, Adel Abdo Moqbel S, Liu A, Yan S, Wu L. Tectorigenin inhibits RANKL-induced osteoclastogenesis via suppression of NF-κB signalling and decreases bone loss in ovariectomized C57BL/6. J Cell Mol Med 2018; 22:5121-5131. [PMID: 30063119 PMCID: PMC6156464 DOI: 10.1111/jcmm.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/19/2022] Open
Abstract
Metabolism of bone is regulated by the balance between osteoblast‐mediated bone formation and osteoclast‐mediated bone resorption. Activation of osteoclasts could lead to osteoporosis. Thus, inhibiting the activity of osteoclasts becomes an available strategy for the treatment of osteoporosis. Tectorigenin is an extract of Belamcanda chinensis In the present study, the anti‐osteoclastogenesis effects of tectorigenin were investigated in vitro and in vivo. The results showed preventive and therapeutic effects of tectorigenin at concentrations of 0, 10, 40, and 80 μmol/L in the maturation and activation of osteoclasts. A signalling study also indicated that tectorigenin treatment reduces activation of NF‐κB signalling in osteoclastogenesis. Animal experiment demonstrated that tectorigenin treatment (1‐10 mg/kg, abdominal injection every 3 days) significantly inhibits bone loss in ovariectomized C57BL/6. Our data suggest that tectorigenin is a potential pharmacological choice for osteoporosis.
Collapse
Affiliation(s)
- Chiyuan Ma
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahong Meng
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yan
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidong Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Lee SY, Kim GT, Yun HM, Kim YC, Kwon IK, Kim EC. Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption. Mol Cells 2018; 41:476-485. [PMID: 29764006 PMCID: PMC5974624 DOI: 10.14348/molcells.2018.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/27/2022] Open
Abstract
Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with μCT and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.
Collapse
Affiliation(s)
- So-Youn Lee
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan00000,
Korea
| | - Il- Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02453,
Korea
| |
Collapse
|
29
|
Johnson-Ajinwo OR, Ullah I, Mbye H, Richardson A, Horrocks P, Li WW. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg Med Chem Lett 2018. [DOI: 10.1016/j.bmcl.2018.02.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Zeng L, Yuan S, Shen J, Wu M, Pan L, Kong X. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro. Mol Med Rep 2017; 17:3935-3943. [PMID: 29359782 DOI: 10.3892/mmr.2017.8313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a major life‑threatening malignancy and is the second highest cause of mortality. The aim of the present study was to investigate the effects of tectorigenin (Tec), a Traditional Chinese Medicine, against human breast cancer cells in vitro. MDA‑MB‑231 and MCF‑7 human breast cancer cells were treated with various concentrations of Tec. Cell proliferation was evaluated using the Cell Counting kit‑8 assay, and apoptosis and the cell cycle were examined by flow cytometry. The migratory and invasive abilities of these cells were detected by Transwell and Matrigel assays, respectively. Metastasis‑, apoptosis‑ and survival‑related gene expression levels were measured by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results indicated that Tec was able to inhibit the proliferation of MDA‑MB‑231 and MCF‑7 cells in a dose‑ and time‑dependent manner. Furthermore, Tec treatment induced apoptosis and G0/G1‑phase arrest, and inhibited cell migration and invasion. Tec treatment decreased the expression of matrix metalloproteinase (MMP)‑2, MMP9, BCL‑2, phosphorylated‑AKT and components of the mitogen‑activated protein kinase (MAPK) signaling pathway, and increased the expression of BCL‑2‑associated X, cleaved poly [ADP‑ribose] polymerase and cleaved caspase‑3. In conclusion, Tec treatment suppressed human breast cancer cells through the downregulation of AKT and MAPK signaling and the upregulated expression and/or activity of the caspase family in vitro. Therefore, Tec may be a potential therapeutic drug to treat human breast cancer.
Collapse
Affiliation(s)
- Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Shaofeng Yuan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Jianliang Shen
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Ming Wu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Liangming Pan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Xiangdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| |
Collapse
|
31
|
Zhang Y, He L, Yue S, Huang Q, Zhang Y, Yang J. Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv 2017; 24:632-640. [PMID: 28283000 PMCID: PMC8241163 DOI: 10.1080/10717544.2017.1284946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to characterize and evaluate tectorigenin-loaded self-microemulsifying drug delivery system (TG-SMEDDS), a previously studied preparation, and further confirm the improvement of TG in solubility and bioavailability. The appearance of TG-SMEDDS was clear and transparent, with good mobility. The microemulsion formed by TG-SMEDDS was globular, edge smooth, clear-cut, and distribution homogeneous under transmission electron microscope. The stability studies revealed that TG-SMEDDS remained stable at room temperature for at least 3 months. TG-SMEDDS showed excellent dissolution behavior that more than 90% of TG was released in only 5 min. The in situ intestinal perfusion studies indicated enhancement of absorption in four tested intestinal segments, and the main absorption site of TG was changed to duodenum. In addition, TG-SMEDDS showed significantly higher Cmax and AUC values (11-fold and 5-fold higher values, respectively; P < 0.05) than TG, and the absolute oral bioavailability of TG-SMEDDS was 56.33% (5-fold higher than that of crude TG). What's more, the AUC0-t of crude TG and TG-SMEDDS in bile duct non-ligation rats were 6.05 and 2.80 times, respectively, than that in bile duct ligation rats, indicating the existence of enterohepatic circulation and the secretion of bile could significantly affect the absorption of TG. Further studies showed that even the bile duct was ligation, TG-SMEDDS can still keep a better oral bioavailability (179.67%, compared with crude TG in the bile duct non-ligation rats). Therefore, our study implies that SMEDDS containing TG could be an effective strategy for the oral administration of TG.
Collapse
Affiliation(s)
- Yunrong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li He
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Shanlan Yue
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Qingting Huang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuhong Zhang
- Medical College of China Three Gorges University, Yichang, China
| | - Junyi Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Wang CL, Li D, Wang CD, Xiao F, Zhu JF, Shen C, Zuo B, Cui YM, Wang H, Gao Y, Hu GL, Zhang XL, Chen XD. Anti-inflammatory and anti-osteoarthritis effects of tectorigenin. Biol Open 2017. [PMID: 28642243 PMCID: PMC5576074 DOI: 10.1242/bio.024562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common and dynamic disease of the joints, including the articular cartilage, underlying bones and synovium. In particular, OA is considered as the degeneration of the cartilage. Tectorigenin (Tec) is known to affect many biological processes; however, its effects on articular chondrocytes remain unclear. This study aimed to assess the effects of Tec on articular cartilage. In vitro, Tec inhibited the expression levels of type X collagen, cyclooxigenase-2, matrix metalloproteinase (MMP)-3 and MMP-13, but enhanced the expression of Runx1, type II collagen and aggrecan in the presence of IL-1β. Meanwhile, Tec inhibited apoptosis through the Bax/Bcl-2/caspase-3 pathway, upregulating p-Bad, downregulating the Bax/Bcl-2 ratio, and activating caspase-3 compared with IL-1β treatment only. Moreover, this process was partially regulated by NF-κB P65. In vivo, the chondroprotective effects of Tec were assessed by establishing a model of surgically induced OA. Tec-treated joints exhibited fewer osteoarthritic changes than saline-treated joints. Meanwhile, 1.5 μg/kg Tec treatment produced a greater protective effect than 0.75 μg/kg Tec. The Osteoarthritis Research Society International (OARSI) scoring system, employed to assess histopathological grading of the models, as well immunohistochemistry for Aggrecan Neoepitope and MMP-3, further confirmed the results. In conclusion, this study showed that Tec plays a chondroprotective role in the OA process by preventing articular cartilage degeneration and chondrocyte apoptosis via the NF-κB P65 pathway. Summary: Tectorigenin exerts anti-inflammatory and anti-osteoarthritis effects by inhibiting apoptosis in chondrocytes via the NF-κB P65 pathway.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Chuan-Dong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Yi-Min Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200082, China
| |
Collapse
|
33
|
Wang H, Sun M, Guo J, Ma L, Jiang H, Gu L, Wen H, Liao S, Chen J, Zeng B, Li Y, Li Y, Yu X, Feng Y, Zhou Y. 3-O-(Z)-coumaroyloleanolic acid overcomes Cks1b-induced chemoresistance in lung cancer by inhibiting Hsp90 and MEK pathways. Biochem Pharmacol 2017; 135:35-49. [DOI: 10.1016/j.bcp.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/06/2017] [Indexed: 02/09/2023]
|
34
|
Lee NY, Chung K, Jin JS, Lee Y, An H. The Inhibitory Effect of Nodakenin on Mast‐Cell‐Mediated Allergic Inflammation Via Downregulation of NF‐κB and Caspase‐1 Activation. J Cell Biochem 2017; 118:3993-4001. [DOI: 10.1002/jcb.26055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Na Young Lee
- Department of PharmacologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
- Department of Herbal Medicine ResourcesChonbuk National UniversityIksan 570‐752Republic of Korea
| | - Kyung‐Sook Chung
- Catholic Precision Medicine Research CenterCollege of MedicineThe Catholic University of Korea222, Banpo‐daero, Seocho‐guSeoul 06591Republic of Korea
| | - Jong Sik Jin
- Department of Herbal Medicine ResourcesChonbuk National UniversityIksan 570‐752Republic of Korea
| | - Young‐Cheol Lee
- Department of HerbologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
| | - Hyo‐Jin An
- Department of PharmacologyCollege of Korean MedicineSangji UniversityGangwon‐do 220‐702Republic of Korea
| |
Collapse
|
35
|
Qu Y, Cong P, Lin C, Deng Y, Li-Ling J, Zhang M. Inhibition of paclitaxel resistance and apoptosis induction by cucurbitacin B in ovarian carcinoma cells. Oncol Lett 2017; 14:145-152. [PMID: 28693146 PMCID: PMC5494940 DOI: 10.3892/ol.2017.6148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the leading cause of mortality among all gynecological malignancies. Drug resistance is a cause of ovarian cancer recurrence and low rate of overall survival. There is a requirement for more effective treatment approaches. Cucurbitacin B (CuB) is an antineoplastic agent derived from traditional Chinese medicinal herbs. Its activity against paclitaxel-resistant human ovarian cancer cells has, however, not yet been established. The purpose of the present study was to investigate the effect and mechanism of CuB on human paclitaxel-resistant ovarian cancer A2780/Taxol cells. Cell viability was evaluated by a cell counting assay, while cell cycle arrest and apoptosis were assessed by microscopy and flow cytometry, and proteins associated with apoptotic pathways and drug resistance were evaluated by western blotting. The present results demonstrated that CuB exerts dose- and time-dependent cytotoxicity against the ovarian cancer A2780 cell line, with half-maximal inhibitory concentration (IC50) values 0.48, 0.25 and 0.21 µM following 24, 48 and 72 h of incubation, respectively. Compared with its sensitive counterpart, A2780, paclitaxel-resistant A2780/Taxol cells had almost identical IC50 values. Cell cycle analysis demonstrated that treatment with CuB may induce cell cycle arrest at the G2/M phase of the cell cycle in the two cell lines. As revealed by Annexin V/propidium iodide-labeled flow cytometry and Hoechst 33258 staining, CuB-induced apoptosis was accompanied by activation of caspase-3 and downregulation of B-cell lymphoma-2. Western blotting demonstrated that CuB may enhance the expression of p53 and p21 in the two cell lines. CuB may also downregulate the expression of P-glycoprotein. These results indicate that CuB may exert a therapeutic effect on paclitaxel-resistant human ovarian cancer.
Collapse
Affiliation(s)
- Yingchun Qu
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Peifang Cong
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chengjiang Lin
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yihui Deng
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110015, P.R. China
| | - Jesse Li-Ling
- Nanchuan Institute of Biological Research, Joint Key Laboratory for Bioresource Research and Utilization of Sichuan and Chongqing, Chongqing 408400, P.R. China.,Institute of Genetic Medicine, Joint Key Laboratory for Bioresource Research and Utilization of Sichuan and Chongqing, School of Life Science, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meixia Zhang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
36
|
Lee HG, Park WJ, Shin SJ, Kwon SH, Cha SD, Seo YH, Jeong JH, Lee JY, Cho CH. Hsp90 inhibitor SY-016 induces G2/M arrest and apoptosis in paclitaxel-resistant human ovarian cancer cells. Oncol Lett 2017; 13:2817-2822. [PMID: 28454472 DOI: 10.3892/ol.2017.5794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to evaluate the in vitro effect of a heat shock protein (Hsp)90 inhibitor, SY-016, on the paclitaxel (PTX)-resistant human ovarian cancer cell line OVCAR-3PTX, and explore its mechanism of apoptosis. In the present study, SY-016 was used in combination with PTX to determine its effect on the cell proliferation and apoptosis of OVCAR-3PTX cells. The drug-resistant tumor cells were established in vitro by stepwise sequential exposure to increasing concentrations of PTX. The cell viability and cell cycle distribution were measured by MTT assay and flow cytometric analysis, respectively. The induction of apoptosis was measured by caspase-3 activity, DNA fragmentation and western blot analyses. The cell viability significantly decreased following treatment with PTX and SY-016 as compared with either drug alone. The DNA fragmentation assay revealed an induction of apoptosis. The results from the flow cytometric analysis revealed an increase in the percentage of cells in the G2/M phase. Downregulation of B-cell lymphoma (Bcl)-2, X-linked inhibitor of apoptosis protein, survivin, Akt, nuclear factor-κB and cyclin-dependent kinase 4, as well as upregulation of Bcl-2-associated X protein, were observed. SY-016 may contribute to the induction of apoptosis in OVCAR-3PTX cells. These results suggest that SY-016 in combination with PTX may be a beneficial chemotherapeutic strategy, particularly in patients with tumors refractory to PTX.
Collapse
Affiliation(s)
- Hyun Gyo Lee
- Institute for Cancer Research, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - Won Jin Park
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - So Jin Shin
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - Sang Hoon Kwon
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - Soon Do Cha
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy Keimyung University, Daegu 42601, Republic of Korea
| | - Ju Hui Jeong
- College of Pharmacy Keimyung University, Daegu 42601, Republic of Korea
| | - Ji Yoon Lee
- Institute for Cancer Research, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| | - Chi Heum Cho
- Institute for Cancer Research, Keimyung University School of Medicine, Daegu 41931, Republic of Korea.,Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 41931, Republic of Korea
| |
Collapse
|
37
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/06/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|
38
|
Li L, Liu JZ, Luo M, Wang W, Huang YY, Efferth T, Wang HM, Fu YJ. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:40-48. [DOI: 10.1016/j.jchromb.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
|
39
|
Yang C, Wang H, Zhang B, Chen Y, Zhang Y, Sun X, Xiao G, Nan K, Ren H, Qin S. LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:158. [PMID: 27737687 PMCID: PMC5062899 DOI: 10.1186/s13046-016-0435-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND LCL161, a novel Smac mimetic, is known to have anti-tumor activity and improve chemosensitivity in various cancers. However, the function and mechanisms of the combination of LCL161 and paclitaxel in non-small cell lung cancer (NSCLC) remain unknown. METHODS Cellular inhibitor of apoptotic protein 1 and 2 (cIAP1&2) expression in NSCLC tissues and adjacent non-tumor tissues were assessed by immunohistochemistry. The correlations between cIAP1&2 expression and clinicopathological characteristics, prognosis were analyzed. Cell viability and apoptosis were measured by MTT assays and Flow cytometry. Western blot and co-immunoprecipitation assay were performed to measure the protein expression and interaction in NF-kB pathway. siRNA-mediated gene silencing and caspases activity assays were applied to demonstrate the role and mechanisms of cIAP1&2 and RIP1 in lung cancer cell apoptosis. Mouse xenograft NSCLC models were used in vivo to determine the therapeutic efficacy of LCL161 alone or in combination with paclitaxel. RESULTS The expression of cIAP1 and cIAP2 in Non-small cell lung cancer (NSCLC) tumors was significantly higher than that in adjacent normal tissues. cIAP1 was highly expressed in patients with late TNM stage NSCLC and a poor prognosis. Positivity for both cIAP1 and cIAP2 was an independent prognostic factor that indicated a poorer prognosis in NSCLC patients. LCL161, an IAP inhibitor, cooperated with paclitaxel to reduce cell viability and induce apoptosis in NSCLC cells. Molecular studies revealed that paclitaxel increased TNFα expression, thereby leading to the recruitment of various factors and the formation of the TRADD-TRAF2-RIP1-cIAP complex. LCL161 degraded cIAP1&2 and released RIP1 from the complex. Subsequently, RIP1 was stabilized and bound to caspase-8 and FADD, thereby forming the caspase-8/RIP1/FADD complex, which activated caspase-8, caspase-3 and ultimately lead to apoptosis. In nude mouse xenograft experiments, the combination of LCL161 and paclitaxel degraded cIAP1,2, activated caspase-3 and inhibited tumor growth with few toxic effects. CONCLUSION Thus, LCL161 could be a useful agent for the treatment of NSCLC in combination with paclitaxel.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huangzhen Wang
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.,Department of Surgical Oncology, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Boxiang Zhang
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yimeng Chen
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xin Sun
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Guodong Xiao
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Hong Ren
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| | - Sida Qin
- Department Two of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
40
|
Singha B, Gatla HR, Phyo S, Patel A, Chen ZS, Vancurova I. IKK inhibition increases bortezomib effectiveness in ovarian cancer. Oncotarget 2016; 6:26347-58. [PMID: 26267322 PMCID: PMC4694906 DOI: 10.18632/oncotarget.4713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism. Here, we tested the hypothesis that IKK inhibition reduces the IL-8 production and increases BZ effectiveness in reducing ovarian tumor growth in vivo. Our results demonstrate that the combination of BZ and the IKK inhibitor Bay 117085 significantly reduces the growth of ovarian tumor xenografts in nude mice when compared to either drug alone. Mice treated with the BZ/Bay 117085 combination exhibit smallest tumors, and lowest levels of IL-8. Furthermore, the reduced tumor growth in the combination group is associated with decreased tumor levels of S536P-p65 NFκB and its decreased recruitment to IL-8 promoter in tumor tissues. These data provide the first in vivo evidence that combining BZ with IKK inhibitor is effective, and suggest that using IKK inhibitors may increase BZ effectiveness in ovarian cancer treatment.
Collapse
Affiliation(s)
- Bipradeb Singha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Sai Phyo
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
41
|
Guo Y, Chen YH, Cheng ZH, Ou-Yang HN, Luo C, Guo ZL. Tectorigenin inhibits osteosarcoma cell migration through downregulation of matrix metalloproteinases in vitro. Anticancer Drugs 2016; 27:540-6. [PMID: 26991068 PMCID: PMC4881729 DOI: 10.1097/cad.0000000000000362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/22/2016] [Indexed: 01/30/2023]
Abstract
Tectorigenin (Tec) is an effective component of the traditional Chinese medicine Belamcanda chinensis, which has been reported to exert beneficial effects in various types of cancer. However, the activity and mechanism of Tec in osteosarcoma (OS) have not been investigated to date. The aim of the present study was to examine the inhibitory effect of Tec on OS and its underlying mechanism of action. OS cells (Saos2 and U2OS) were treated with various concentrations of Tec for 24, 48, and 72 h. Cell proliferation was evaluated using an CCK-8 assay. Cell migration and invasion ability were measured using the Transwell assay. The expressions of MMP1, MMP2, MMP9, and cleaved caspase3 were measured using real-time PCR and/or western blot analysis. We found that Tec inhibited the proliferation of OS cells (Saos2 and U2OS) in a dose-dependent and time-dependent manner. In addition, Tec significantly inhibited migration and invasion in OS cells (P<0.05). Tec upregulated the expression of cleaved caspase3, while downregulating the expression of MMP1, MMP2, and MMP9. Taken together, the present study provided fundamental evidence for the application of Tec in chemotherapy against OS.
Collapse
Affiliation(s)
- Yu Guo
- Departments of aNeurosurgery bPlastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu Z, Zhu G, Getzenberg RH, Veltri RW. The Upregulation of PI3K/Akt and MAP Kinase Pathways is Associated with Resistance of Microtubule-Targeting Drugs in Prostate Cancer. J Cell Biochem 2016; 116:1341-9. [PMID: 25640606 DOI: 10.1002/jcb.25091] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 12/13/2022]
Abstract
Resistance is a significant limitation to the effectiveness of cancer therapies. The PI3K/Akt and MAP kinase pathways play important roles in a variety of normal cellular processes and tumorigenesis. This study is designed to explore the relationship of these signaling pathways with multidrug resistance in prostate cancer (PCa). The PI3K/Akt and MAP kinase pathways were investigated utilizing paclitaxel resistant DU145-TxR PCa cells and their parental non-resistant DU145 cells to determine their relationship with resistance to paclitaxel and other anticancer drugs. Our results demonstrate that the PI3K/Akt and MAP kinase pathways are upregulated in DU145-TxR cells compared to the DU145 cells. Inactivating these pathways using the PI3K/Akt pathway inhibitor LY294002 or the MAP kinase pathway inhibitor PD98059 renders the DU145-TxR cells more sensitive to paclitaxel. We investigated the effects of these inhibitors on other anticancer drugs including docetaxel, vinblastine, doxorubicin, 10-Hydroxycamptothecin (10-HCPT) and cisplatin and find that both inhibitors induces DU145-TxR cells to be more sensitive only to the microtubule-targeting drugs (paclitaxel, docetaxel and vinblastine). Furthermore, the treatment with these inhibitors induces cleaved-PARP production in DU145-TxR cells, suggesting that apoptosis induction might be one of the mechanisms for the reversal of drug resistance. In conclusion, the PI3K/Akt and MAP kinase pathways are associated with resistance to multiple chemotherapeutic drugs. Inactivating these pathways renders these PCa cells more sensitive to microtubule-targeting drugs such as paclitaxel, docetaxel and vinblastine. Combination therapies with novel inhibitors of these two signaling pathways potentially represents a more effective treatment for drug resistant PCa.
Collapse
Affiliation(s)
- Zhi Liu
- The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Guangjing Zhu
- The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | - Robert W Veltri
- The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
43
|
Kim DY, Won KJ, Hwang DI, Yoon SW, Lee SJ, Park JH, Yoon MS, Kim B, Lee HM. Potential Skin Regeneration Activity and Chemical Composition of Absolute from Pueraria thunbergiana Flower. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The flower of Pueraria thunbergiana BENTH (PTBF) contains isoflavonoids and essential oil components. It has many biological and pharmacological activities, including anti-diabetes, anti-oxidant, and weight loss. However, its effect on skin regeneration remains unknown. In the present study, we isolated the absolute from PTBF through solvent extraction and determined the role of the absolute on skin regeneration-associated responses in human epidermal-keratinocytes (HaCats). The PTBF absolute, which contained 10 compounds, stimulated migration and proliferation and increased the phosphorylation of serine/threonine-specific protein kinase and extracellular signal-regulated kinase1/2 in HaCats. It induced type I and IV collagen synthesis in HaCats. In addition, treatment with PTBF absolute resulted in increased sprout outgrowth in HaCats. These findings suggest that PTBF absolute may participate in skin regeneration, probably through promotion of migration, proliferation, and collagen synthesis.
Collapse
Affiliation(s)
- Do-Yoon Kim
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
- These two authors contributed equally to this work
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Chungju-city Chungbuk Prefecture 380-701, Republic of Korea
- These two authors contributed equally to this work
| | - Dae-Il Hwang
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| | - Seok Won Yoon
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| | - Su Jin Lee
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| | - Joo-Hoon Park
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| | - Myeong Sik Yoon
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| | - Bokyung Kim
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Chungju-city Chungbuk Prefecture 380-701, Republic of Korea
| | - Hwan Myung Lee
- Division of Bioindustry, College of Life and Health Science, Hoseo University, Asan-city Chungnam Prefecture 336-795, Republic of Korea
| |
Collapse
|
44
|
Tu CC, Huang CY, Cheng WL, Hung CS, Uyanga B, Wei PL, Chang YJ. The α7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to taxanes. Tumour Biol 2015; 37:4421-8. [DOI: 10.1007/s13277-015-4260-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
|
45
|
Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets 2015; 19:1171-85. [DOI: 10.1517/14728222.2015.1049838] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Tectorigenin ablates the inflammation-induced epithelial–mesenchymal transition in a co-culture model of human lung carcinoma. Pharmacol Rep 2015; 67:382-7. [DOI: 10.1016/j.pharep.2014.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
|
47
|
Jelínek M, Balušíková K, Schmiedlová M, Němcová-Fürstová V, Šrámek J, Stančíková J, Zanardi I, Ojima I, Kovář J. The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int 2015; 15:8. [PMID: 25685064 PMCID: PMC4329194 DOI: 10.1186/s12935-015-0155-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 12/31/2014] [Indexed: 12/04/2022] Open
Abstract
Background In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3). Methods and results Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment. Conclusion We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.
Collapse
Affiliation(s)
- Michael Jelínek
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Schmiedlová
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vlasta Němcová-Fürstová
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Šrámek
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stančíková
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilaria Zanardi
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY USA
| | - Jan Kovář
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
48
|
Yang YI, Ahn JH, Choi YS, Choi JH. Brown algae phlorotannins enhance the tumoricidal effect of cisplatin and ameliorate cisplatin nephrotoxicity. Gynecol Oncol 2015; 136:355-64. [PMID: 25462204 DOI: 10.1016/j.ygyno.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The clinical application of cisplatin is limited due to its drug resistance and side effects. We investigated the effect of a phlorotannin-rich extract from the edible brown alga Ecklonia cava (PREC) and its major phlorotannin (dieckol) on cisplatin responsiveness and side effects. METHODS The A2780 and SKOV3 ovarian cancer cell lines and the SKOV3-bearing mouse model were used. The MTT assay was applied to assess cell viability, and the annexin V assay was employed for apoptosis analysis. Reactive oxygen species (ROS) production and protein expression were assessed by H2DCFDA staining and Western blotting, respectively. RESULTS We found that PREC enhanced the tumor growth-inhibitory effect of cisplatin and diminished cisplatin-induced nephrotoxicity and weight loss in SKOV3-bearing mice. PREC augmented cisplatin-induced apoptosis by activating caspases in SKOV3 and A2780 ovarian cancer cells. In addition, a combination of PREC and cisplatin-induced ovarian cancer cell apoptosis by downregulating the Akt and NFκB pathways. We further demonstrated that PREC increased intracellular ROS and that antioxidants significantly attenuated Akt-NFκB activation and apoptosis in ovarian cancer cells. In contrast, PREC inhibited cisplatin-induced ROS production and cell death in normal HEK293 kidney cells. Dieckol, a major compound in PREC, significantly enhanced the inhibition of tumor growth by cisplatin with less weight loss and kidney damage in a mouse model. CONCLUSION These data suggest that brown algae phlorotannins may improve the efficacy of platinum drugs for ovarian cancer by enhancing cancer cell apoptosis via the ROS/Akt/NFκB pathway and reduce nephrotoxicity by protecting against normal kidney cell damage.
Collapse
Affiliation(s)
- Yeong-In Yang
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ji-Hye Ahn
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
49
|
XIE QI, ZHANG HANFANG, GUO YINGZI, WANG PENGYI, LIU ZHONGSHUNG, GAO HUADONG, XIE WEILI. Combination of Taxol® and dichloroacetate results in synergistically inhibitory effects on Taxol-resistant oral cancer cells under hypoxia. Mol Med Rep 2014; 11:2935-40. [DOI: 10.3892/mmr.2014.3080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
|
50
|
Wang Y, Liu Y, Li G, Su Z, Ren S, Tan P, Zhang X, Qiu Y, Tian Y. Ephrin type‑A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3‑kinase/Akt signalling pathway. Mol Med Rep 2014; 11:924-30. [PMID: 25351620 PMCID: PMC4262504 DOI: 10.3892/mmr.2014.2799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/22/2014] [Indexed: 01/20/2023] Open
Abstract
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC.
Collapse
Affiliation(s)
- Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhongwu Su
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuling Ren
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pingqing Tan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|