1
|
Rao Q, Guo M, Sun J, Yang B, Cao X, Xia J. Sulfiredoxin-1 promotes the growth of hepatocellular carcinoma by inhibiting TFEB-mediated autophagy and lysosome biogenesis. Exp Cell Res 2024; 441:114169. [PMID: 39029574 DOI: 10.1016/j.yexcr.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) patients have poor prognosis. As an endogenous antioxidant enzyme involved in a variety of bioprocesses, sulfiredoxin-1 (SRXN1) plays an irreplaceable role in promoting the development of tumors. However, the role and working mechanism of SRXN1 in HCC remain unclear. In this study, we confirmed that SRXN1 promoted the cell proliferation of HCC at genetic and pharmacological level, respectively. Transcriptome sequencing analysis revealed SRXN1 knockdown had a significant effect on the expression of lysosome biogenesis related genes. Further experiments validated that lysosome biogenesis and autophagic flux were enhanced after SRXN1 inhibition and reduced as SRXN1 overexpression. Mechanism study revealed that ROS accumulation induced TFEB nuclear translocation, followed by increased autophagy. Following this rationale, the combination of SRXN1 inhibitor and sorafenib demonstrated noticeable synergistic antitumor effect through the boost of ROS both in vivo and in vitro. Taken together, SRXN1 could be a potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Qianwen Rao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China; Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Mishra M, Jiang H, Wei Q. New insights on the differential interaction of sulfiredoxin with members of the peroxiredoxin family revealed by protein-protein docking and experimental studies. Eur J Pharmacol 2023; 954:175873. [PMID: 37353187 PMCID: PMC10426277 DOI: 10.1016/j.ejphar.2023.175873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sulfiredoxin (Srx) is the enzyme that restores the peroxidase activity of peroxiredoxins (Prxs) through catalyzing the reduction of hyperoxidized Prxs back to their active forms. This process involves protein-protein interaction in an enzyme-substrate binding manner. The integrity of the Srx-Prx axis contributes to the pathogenesis of various oxidative stress related human disorders including cancer, inflammation, cardiovascular and neurological diseases. The purpose of this study is to understand the structural and molecular biology of the Srx-Prx interaction, which may be of significance for prediction of target site for the novel drug-discovery. Homology modeling and protein-protein docking approaches were applied to examine the Srx-Prx interaction using online platforms including ITASSER, Phyre2, Swissmodel, AlphaFold, MZDOCK and ZDOCK. By in-silico studies, A 26-amino acid motif at the C-terminus of Prx1 was predicted to cause a steric hindrance for the kinetics of the Srx-Prx1 interaction. These predictions were tested in-vitro using purified recombinant proteins including Srx, full-length Prxs, and C-terminus deleted Prxs. We confirmed that deletion of the C-terminus of Prxs significantly enhanced its rate of association with Srx (i.e. >1000 fold increase in the ka of the Srx-Prx1 interaction) with minimal effect on the rate of dissociation (kd). Differential interaction of Srx with individual members of the Prx family was further examined in cultured cells. Taken together, these data add novel molecular and structural insights critical for the understanding of the biology of the Srx-Prx interaction that may be of value for the development of targeted therapy for human disorders.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Thapa P, Jiang H, Ding N, Hao Y, Alshahrani A, Lee EY, Fujii J, Wei Q. Loss of Peroxiredoxin IV Protects Mice from Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Cancer Development. Antioxidants (Basel) 2023; 12:677. [PMID: 36978925 PMCID: PMC10045277 DOI: 10.3390/antiox12030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Peroxiredoxin IV (Prx4), a typical two-cysteine-containing member of the peroxidase family, functions as an antioxidant to maintain cellular redox homeostasis through the reduction of reactive oxygen species (ROS) via cycles of oxidation-reduction reactions. Under oxidative stress, all Prxs including Prx4 are inactivated as their catalytic cysteines undergo hyperoxidation, and hyperoxidized two-cysteine Prxs can be exclusively repaired and revitalized through the reduction cycle catalyzed by sulfiredoxin (Srx). Previously, we showed that Prx4 is a preferred substrate of Srx, and knockout of Srx in mice leads to resistance to azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis. To further understand the significance of the Srx/Prx4 axis in colorectal cancer development, Prx4-/- mice were established and subjected to standard AOM/DSS protocol. Compared with wildtype littermates, mice with Prx4-/- genotype had significantly fewer and smaller tumors. Histopathological analysis revealed that loss of Prx4 leads to increased cell death through lipid peroxidation and lower infiltration of inflammatory cells in the knockout tumors compared to wildtype. Treatment with DSS alone also showed decreased infiltration of macrophages and lymphocytes in the colon of knockout mice, suggesting a role for Prx4 in inflammatory response. In addition, loss of Prx4 caused alterations in plasma cytokines and chemokines after DSS and AOM/DSS treatments. These findings suggest that loss of Prx4 protects mice from AOM/DSS-induced colon tumorigenesis. Thus, targeting Prx4 may provide novel strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Junichi Fujii
- Department of Biomolecular Function, Yamagata University, Yamagata 990-9585, Japan
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Hewitt OH, Degnan SM. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci Rep 2023; 13:2510. [PMID: 36781921 PMCID: PMC9925728 DOI: 10.1038/s41598-023-29304-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Oxygen is the sustenance of aerobic life and yet is highly toxic. In early life, antioxidants functioned solely to defend against toxic effects of reactive oxygen species (ROS). Later, as aerobic metabolisms evolved, ROS became essential for signalling. Thus, antioxidants are multifunctional and must detoxify, but also permit ROS signalling for vital cellular processes. Here we conduct metazoan-wide genomic assessments of three enzymatic antioxidant families that target the predominant ROS signaller, hydrogen peroxide: namely, monofunctional catalases (CAT), peroxiredoxins (PRX), and glutathione peroxidases (GPX). We reveal that the two most evolutionary ancient families, CAT and PRX, exhibit metazoan-wide conservation. In the basal animal lineage, sponges (phylum Porifera), we find all three antioxidant families, but with GPX least abundant. Poriferan CATs are distinct from bilaterian CATs, but the evolutionary divergence is small. Amongst PRXs, subfamily PRX6 is the most conserved, whilst subfamily AhpC-PRX1 is the largest; PRX4 is the only core member conserved from sponges to mammals and may represent the ancestral animal AhpC-PRX1. Conversely, for GPX, the most recent family to arise, only the cysteine-dependent subfamily GPX7 is conserved across metazoans, and common across Porifera. Our analyses illustrate that the fundamental functions of antioxidants have resulted in gene conservation throughout the animal kingdom.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Murthykumar K, Varghese S, Jayaseelan VP. Association of SRXN1 Receptor Gene Polymorphism with Susceptibility to Periodontitis. Contemp Clin Dent 2022; 13:363-368. [PMID: 36686993 PMCID: PMC9855261 DOI: 10.4103/ccd.ccd_309_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 11/06/2022] Open
Abstract
Background Emerging evidence suggests that oxidative stress forms a key component in the etiopathogenesis of periodontitis. Literature evidence have shown potential antioxidants responsible for combating the pro-oxidants which stress the periodontium, but the peroxiredoxin-sulfiredoxin system is explored very minimally in periodontal disease. Thus, the present study was aimed to evaluate the genetic association of SRXN1 receptor gene polymorphism (rs6053666). Materials and Methods A total of 100 subjects were recruited for this study, which included 50 Periodontitis patients (Stage II and above based on the criteria of American Association of Periodontology-2018) and 50 periodontally healthy or mild gingivitis. Genomic DNA was extracted from the whole blood collected from the subjects. DNA was amplified using specific primers flanking the BtgI region of the SRXN1 receptor gene. The amplicon was further subjected to genotyping using restriction fragment length using BtgI enzyme. The genotype obtained based on the restriction fragment length polymorphism pattern was recorded and used for statistical analysis. The distribution of genotypes and allele frequencies in the periodontitis and control groups were compared using the Chi-square test. The risk associated with individual alleles or genotypes was calculated as the odds ratio with 95% confidence intervals. Statistical significance in all tests was determined at P < 0.05. Results The genotype frequency and distributions of SRXN1 receptor BtgI polymorphism did not differ significantly at ꭕ2df (P = 0.557). Our study results showed that homozygous and heterozygous mutant genotypes had no significant difference (CC vs. CT + TT) between the periodontitis patients and control group with a P = 0.4266. The detected frequency of CT (38% vs. 34%) and TT (42% vs. 52%) genotype showed no significant difference between control and test group. There was no significant difference in C allele (39% vs. 31%) and T allele (61% vs. 69%) between the test and control group. Conclusion The present study denotes that SRXN1 receptor gene polymorphism is not associated with periodontitis in the study group analyzed.
Collapse
Affiliation(s)
| | - Sheeja Varghese
- Department of Periodontics, Saveetha Dental College, Chennai, Tamil Nadu, India
| | | |
Collapse
|
6
|
Apigenin Induced Apoptosis by Downregulating Sulfiredoxin Expression in Cutaneous Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8172866. [PMID: 35965686 PMCID: PMC9371852 DOI: 10.1155/2022/8172866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second carcinoma in nonmelanoma skin cancer (NMSC). Sulfiredoxin (Srx) is an antioxidant protein with a role in maintaining redox homeostasis. And Srx has an oncogenic role in skin tumorigenesis. In the current study, we found that apigenin, as a natural flavonoid, downregulated the expression of Srx protein in cSCC cell lines. Apigenin also inhibited the ability of cell proliferation and migration and induced apoptosis in cSCC cell lines. Our results also showed that apigenin induced apoptosis via the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, as well as downregulated Srx expression in cSCC cell lines. Importantly, the effect of downregulation Srx by apigenin has been rescued with the inhibitor of the MAPK signaling pathway intervention. And induced apoptosis by apigenin was partially attenuated by the addition of MAPK inhibitor, Binimetinib. Our research revealed that apigenin induced apoptosis by downregulation of Srx expression through regulating the MAPK signaling pathway in cSCC cells, thus providing evidence of its applicability as a potentially effective therapeutic agent for cSCC treatment.
Collapse
|
7
|
Sulfiredoxin Promotes Cancer Cell Invasion through Regulation of the miR143-Fascin Axis. Mol Cell Biol 2022; 42:e0005122. [PMID: 35412358 DOI: 10.1128/mcb.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular antioxidant enzymes are critical for maintenance of redox homeostasis, but whether and how they contribute to the malignancy of cancer cells remains poorly understood. Sulfiredoxin (Srx) is a unique oxidoreductase in that it not only restores peroxidase activity of peroxiredoxins (Prxs) but also functions as a pivotal stimulator of oncogenic signaling. We found that abnormally high level of Srx promotes colorectal cancer (CRC) malignancy by stimulating gelatin degradation, invadopodia formation, and cell invasion. Fascin, an actin-bundling protein, was discovered and validated as one of the critical downstream targets of Srx activation. We demonstrated that depletion of Srx in CRC cells leads to upregulation of miR-143-3p, which mediates degradation of fascin mRNA through binding to conserved sites within the 3' untranslated region (UTR). Depletion of fascin in CRC cells recapitulates the effect of Srx loss, and restoration of fascin in Srx-depleted cells by miR-143-3p inhibitor or overexpression rescues defects in cell invasion. Therefore, our data demonstrate that the Srx-miR143-fascin axis plays a key role in promoting the malignancy of human CRC cells. In the future, the Srx-miR143-fascin axis can be used as a functional pathway to evaluate the efficacy of therapeutic drugs or be targeted to develop promising chemotherapeutics for treatment of CRC patients.
Collapse
|
8
|
McGinnis A, Klichko VI, Orr WC, Radyuk SN. Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila. Antioxidants (Basel) 2021; 10:antiox10040606. [PMID: 33920774 PMCID: PMC8071185 DOI: 10.3390/antiox10040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The catalytic activity of peroxiredoxins (Prx) is determined by the conserved peroxidatic cysteine (CysP), which reacts with peroxides to form sulfenic acid (Cys-SOH). Under conditions of oxidative stress, CysP is oxidized to catalytically inactive sulfinic (Cys-SO2) and sulfonic (Cys-SO3) forms. The Cys-SO2 form can be reduced in a reaction catalyzed by sulfiredoxin (Srx). To explore the physiological significance of peroxiredoxin overoxidation, we investigated daily variations in the oxidation state of 2-Cys peroxiredoxins in flies of different ages, or under conditions when the pro-oxidative load is high. We found no statistically significant changes in the 2-Cys Prxs monomer:dimer ratio, which indirectly reflects changes in the Prx catalytic activity. However, we found daily variations in Prx-SO2/3 that were more pronounced in older flies as well as in flies lacking Srx. Unexpectedly, the srx mutant flies did not exhibit a diminished survivorship under normal or oxidative stress conditions. Moreover, the srx mutant was characterized by a higher physiological activity. In conclusion, catalytically inactive forms of Prx-SO2/3 serve not only as a marker of cellular oxidative burden, but may also play a role in an adaptive response, leading to a positive effect on the physiology of Drosophila melanogaster.
Collapse
|
9
|
Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish Its Relationship with Antioxidants and Cancer. Antioxidants (Basel) 2021; 10:antiox10010128. [PMID: 33477494 PMCID: PMC7831054 DOI: 10.3390/antiox10010128] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that reactive oxygen species (ROS) mediate tissue homeostasis, cellular signaling, differentiation, and survival. ROS and antioxidants exert both beneficial and harmful effects on cancer. ROS at different concentrations exhibit different functions. This creates necessity to understand the relation between ROS, antioxidants, and cancer, and methods for detection of ROS. This review highlights various sources and types of ROS, their tumorigenic and tumor prevention effects; types of antioxidants, their tumorigenic and tumor prevention effects; and abnormal ROS detoxification in cancer; and methods to measure ROS. We conclude that improving genetic screening methods and bringing higher clarity in determination of enzymatic pathways and scale-up in cancer models profiling, using omics technology, would support in-depth understanding of antioxidant pathways and ROS complexities. Although numerous methods for ROS detection are developing very rapidly, yet further modifications are required to minimize the limitations associated with currently available methods.
Collapse
|
10
|
Rao QW, Zhang SL, Guo MZ, Yuan FF, Sun JL, Qi F, Wang LS, Yang BW, Xia JL. Sulfiredoxin-1 is a promising novel prognostic biomarker for hepatocellular carcinoma. Cancer Med 2020; 9:8318-8332. [PMID: 32955798 PMCID: PMC7666720 DOI: 10.1002/cam4.3430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Identifying novel prognostic biomarkers for hepatocellular carcinoma (HCC) and then, develop an effective individualized treatment strategy remain extremely warranted. The prognostic role of sulfiredoxin-1(SRXN1), an antioxidant enzyme, remains unknown in HCC. This study aimed to explore the prognostic implications of SRXN1 in HCC patients after partial hepatectomy. The expression of SRXN1 in HCC and normal tissue were analyzed using the patients from the public databases and Zhongshan Hospital. The Cox regression, Kaplan-Meier survival analysis, and time-dependent receiver operating characteristic curves were performed to identify the predictive role of SRXN1 expression on HCC patients. A prognostic nomogram based on SRXN1 expression was constructed and validated to further confirm the predictive power of SRXN1 as a prognostic biomarker. Finally, functional enrichment analysis and protein-protein interaction network analysis of SRXN1 and its associated genes were conducted. The results showed that SRXN1 was upregulated in HCC samples compared with the normal liver tissues. Patients with SRXN1 upregulation had shorter survival time. SRXN1 overexpression was significantly correlated with advanced clinicopathological parameters. The prognostic nomogram based on SRXN1 expression was proved to be more accurate than routine staging systems for the prediction of overall survival. Protein-protein interaction network analysis demonstrated the first neighbor genes of SRXN1 mainly participated in response to oxidative stress. In brief, SRXN1 could be a prognostic biomarker for the management of HCC.
Collapse
Affiliation(s)
- Qian-Wen Rao
- Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Long Zhang
- Institute of Fudan-Minhang Academic Health System, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng-Zhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei-Fei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Lei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Institute of Fudan-Minhang Academic Health System, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bi-Wei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing-Lin Xia
- Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Bacteroides fragilis Enterotoxin Induces Sulfiredoxin-1 Expression in Intestinal Epithelial Cell Lines Through a Mitogen-Activated Protein Kinases- and Nrf2-Dependent Pathway, Leading to the Suppression of Apoptosis. Int J Mol Sci 2020; 21:ijms21155383. [PMID: 32751114 PMCID: PMC7432937 DOI: 10.3390/ijms21155383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis is a causative agent of colitis and secrets enterotoxin (BFT), leading to the disease. Sulfiredoxin (Srx)-1 serves to protect from oxidative damages. Although BFT can generate reactive oxygen species in intestinal epithelial cells (IECs), no Srx-1 expression has been reported in ETBF infection. In this study, we explored the effects of ETBF-produced BFT on Srx-1 induction in IECs. Treatment of IECs with BFT resulted in increased expression of Srx-1 in a time-dependent manner. BFT treatment also activated transcriptional signals including Nrf2, AP-1 and NF-κB, and the Srx-1 induction was dependent on the activation of Nrf2 signals. Nrf2 activation was assessed using immunoblot and Nrf2-DNA binding activity and the specificity was confirmed by supershift and competition assays. Suppression of NF-κB or AP-1 signals did not affect the upregulation of Srx-1 expression. Nrf2-dependent Srx-1 expression was associated with the activation of p38 mitogen-activated protein kinases (MAPKs) in IECs. Furthermore, suppression of Srx-1 significantly enhanced apoptosis while overexpression of Srx-1 significantly attenuated apoptosis during exposure to BFT. These results imply that a signaling cascade involving p38 and Nrf2 is essential for Srx-1 upregulation in IECs stimulated with BFT. Following this upregulation, Srx-1 may control the apoptosis in BFT-exposed IECs.
Collapse
|
12
|
Harris IS, DeNicola GM. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol 2020; 30:440-451. [PMID: 32303435 DOI: 10.1016/j.tcb.2020.03.002] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play important roles in tissue homeostasis, cellular signaling, differentiation, and survival. In this review, we discuss the types ofROS, their impact on cellular processes, and their pro- and antitumorigenic effects. Further, we discuss recent advances in our understanding of both endogenous and exogenous antioxidants in tumorigenic processes. Finally, wediscuss how aberrant activation of antioxidant programs by the transcription factor NFE2-related factor 2 (NRF2) influences tumorigenesis and metastasis, and where the current gaps in our knowledge remain.
Collapse
Affiliation(s)
- Isaac S Harris
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
13
|
Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2148562. [PMID: 32411320 PMCID: PMC7201699 DOI: 10.1155/2020/2148562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.
Collapse
|
14
|
Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis. J Ginseng Res 2019; 44:580-592. [PMID: 32617038 PMCID: PMC7322735 DOI: 10.1016/j.jgr.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/17/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023] Open
Abstract
Background Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non–organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell–mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.
Collapse
|
15
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
16
|
Mishra M, Jiang H, Chawsheen HA, Gerard M, Toledano MB, Wei Q. Nrf2-activated expression of sulfiredoxin contributes to urethane-induced lung tumorigenesis. Cancer Lett 2018; 432:216-226. [PMID: 29906488 DOI: 10.1016/j.canlet.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking and exposure to chemical carcinogens are among the risk factors of lung tumorigenesis. In this study, we found that cigarette smoke condensate and urethane significantly stimulated the expression of sulfiredoxin (Srx) at the transcript and protein levels in cultured normal lung epithelial cells, and such stimulation was mediated through the activation of nuclear related factor 2 (Nrf2). To study the role of Srx in lung cancer development in vivo, mice with Srx wildtype, heterozygous or knockout genotype were subjected to the same protocol of urethane treatment to induce lung tumors. By comparing tumor multiplicity and volume between groups of mice with different genotype, we found that Srx knockout mice had a significantly lower number and smaller size of lung tumors. Mechanistically, we demonstrated that loss of Srx led to a decrease of tumor cell proliferation as well as an increase of tumor cell apoptosis. These data suggest that Srx may have an oncogenic role that contributes to the development of lung cancer in smokers or urethane-exposed human subjects.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Matthieu Gerard
- Epigenetic Regulation and Cancer Group, Institut de Biologie et de Technologies de Saclay (iBiTecS), CEA-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel B Toledano
- Oxidative Stress and Cancer Group (LSOC), Institut de Biologie et de Technologies de Saclay (iBiTecS), CEA-Saclay, 91191, Gif-sur-Yvette, France
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
17
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
18
|
Lan K, Zhao Y, Fan Y, Ma B, Yang S, Liu Q, Linghu H, Wang H. Sulfiredoxin May Promote Cervical Cancer Metastasis via Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2017; 18:ijms18050917. [PMID: 28448437 PMCID: PMC5454830 DOI: 10.3390/ijms18050917] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 01/09/2023] Open
Abstract
The abnormal elevation of sulfiredoxin (Srx/SRXN1)-an antioxidant enzyme whose main function is to protect against oxidative stress-has been shown to be closely correlated with the progression of several types of cancer, including human cervical cancer. However, the molecular mechanism by which Srx promotes tumor progression, especially cancer metastasis in cervical cancer, has not been elucidated. Here, we show that Srx expression gradually increases during the progression of human cervical cancer and its expression level is closely correlated with lymph node metastasis. Our study also reveals a significant positive correlation between the expression of Srx and β-catenin in cervical cancer tissues. Loss-of-function studies demonstrate that Srx knockdown using a lentiviral vector-mediated specific shRNA decreases the migration and invasion capacity in HeLa (human papilloma virus 18 type cervical cancer cell line) and SiHa SiHa (cervical squamous cancer cell line). Notably, the exact opposite effects were observed in gain-of-function experiments in C-33A cells. Mechanistically, downregulation or upregulation of Srx leads to an altered expression of proteins associated with the Wnt/β-catenin signaling pathway. Furthermore, blockage of the Wnt/β-catenin signaling pathway contributed to attenuated Srx expression and resulted in significant inhibition of cell migration and invasion in cervical cancer cell lines. Combined, Srx might be an oncoprotein in cervical cancer, playing critical roles in activating the Wnt/β-catenin signaling pathway; it may therefore be a therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Kangyun Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yuni Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yue Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Binbin Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Shanshan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hua Linghu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4383652. [PMID: 28133506 PMCID: PMC5241484 DOI: 10.1155/2017/4383652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/29/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p > 0.05). Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p < 0.05). The urinary iodine concentration of the 100 HI group on Days 7, 14, and 28 was 60–80 times that of the NI group. The mitochondrial superoxide production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p < 0.05). Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats.
Collapse
|
20
|
Kim J, Lee GR, Kim H, Jo YJ, Hong SE, Lee J, Lee HI, Jang YS, Oh SH, Lee HJ, Lee JS, Jeong W. Effective killing of cancer cells and regression of tumor growth by K27 targeting sulfiredoxin. Free Radic Biol Med 2016; 101:384-392. [PMID: 27825965 DOI: 10.1016/j.freeradbiomed.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
Cancer cells have been suggested to be more susceptible to oxidative damages and highly dependent on antioxidant capacity in comparison with normal cells, and thus targeting antioxidant enzymes has been a strategy for effective cancer treatment. Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of sulfinylated peroxiredoxins and thereby reactivates them. In this study we developed a Srx inhibitor, K27 (N-[7-chloro-2-(4-fluorophenyl)-4-quinazolinyl]-N-(2-phenylethyl)-β-alanine), and showed that it induces the accumulation of sulfinylated peroxiredoxins and oxidative stress, which leads to mitochondrial damage and apoptotic death of cancer cells. The effects of K27 were significantly reversed by ectopic expression of Srx or antioxidant N-acetyl cysteine. In addition, K27 led to preferential death of tumorigenic cells over non-tumorigenic cells, and suppressed the growth of xenograft tumor without acute toxicity. Our results suggest that targeting Srx might be an effective therapeutic strategy for cancer treatment through redox-mediated cell death.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hojin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Yeong-Su Jang
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-840, South Korea
| | - Seung-Hyun Oh
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-840, South Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
21
|
Kim H, Lee GR, Kim J, Baek JY, Jo YJ, Hong SE, Kim SH, Lee J, Lee HI, Park SK, Kim HM, Lee HJ, Chang TS, Rhee SG, Lee JS, Jeong W. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage. Free Radic Biol Med 2016; 91:264-74. [PMID: 26721593 DOI: 10.1016/j.freeradbiomed.2015.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/19/2015] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiwon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jin Young Baek
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Sung Hoon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 339-700, South Korea
| | - Hwan Mook Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon 406-799, South Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Tong-Shin Chang
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
22
|
Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal 2015; 13:39. [PMID: 26369938 PMCID: PMC4570748 DOI: 10.1186/s12964-015-0118-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany
| | - Ludger A Wessjohann
- Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle /Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle/Saale, Germany.
| |
Collapse
|
23
|
Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett 2015; 366:150-9. [PMID: 26170166 DOI: 10.1016/j.canlet.2015.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Lisha Wu
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
24
|
Role of sulfiredoxin in systemic diseases influenced by oxidative stress. Redox Biol 2014; 2:1023-8. [PMID: 25460739 PMCID: PMC4215520 DOI: 10.1016/j.redox.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions.
Collapse
|