1
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Yari K, Hakimi A, Mohammadi M, Ammari-Allahyari M, Salari N, Ghasemi H. The Association of PTEN Gene Mutations with the Breast Cancer Risk: A Systematic Review and Meta-analysis. Biochem Genet 2024; 62:1617-1635. [PMID: 37658255 DOI: 10.1007/s10528-023-10464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/18/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer (BC) is the most common malignancy in women in western countries. A significant part of malignant cases is caused by genetic mutation. Mutations in the gene phosphatase and tensin homologue deleted on chromosome (PTEN) have been proven in various malignancies. The present study was conducted with the aim of investigating the prevalence of BC due to PTEN gene mutation, as well as estimating the chance of developing BC due to the occurrence of PTEN gene mutation. The present study was conducted using a systematic review method based on PRISMA 2020 statements. The search was done in PubMed, Web of Science (WOS), Scopus, and direct scientific databases. The search was performed using the keywords breast cancer, breast malignancy, PTEN, polymorphism, mutation, variant, and their equivalents. Statistical analysis was performed using the second version of Comprehensive Meta-Analysis Software. A total of 2138 articles were collected. After removing duplicate articles, checking the title and abstract, and then checking the full text of the documents, finally 64 articles were approved and entered the systematic review process. Analysis of these studies with a sample size of 231,179 showed the prevalence of breast cancer patients with PTEN mutations. The combined results of 64 studies showed that the prevalence of PTEN mutations has a 3.3 (95% CI 2.2-5) in BC patients, and an analysis of 6 studies showed that the odds ratio of developing BC due to PTEN mutation is 3.7 (95% CI 1.1-11.9). The results of this study show that mutation in the PTEN gene increases the chance of developing BC. However, it was found that a small part of patients gets BC due to the occurrence of mutation in this gene.
Collapse
Affiliation(s)
- Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Hakimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | | | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hooman Ghasemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Pramanik R, Chitikela S, Deo SVS, Gogia A, Batra A, Kumar A, Gupta R, Thakral D, Ramprasad VL, Mathur S, Sharma DN, Sharma A, Mishra A, Bansal B. Comprehensive germline profiling of patients with breast cancer: initial experience from a Familial Cancer Clinic. Ecancermedicalscience 2024; 18:1670. [PMID: 38439815 PMCID: PMC10911669 DOI: 10.3332/ecancer.2024.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 03/06/2024] Open
Abstract
Introduction Breast cancer is the most common cancer among Indian females. There is limited data on germline profiling of breast cancer patients from India. Objective The objective of the current study was to analyse the frequency and spectrum of germline variant profiles and clinicopathological characteristics of breast cancer patients referred to our Familial Cancer Clinic (FCC). Materials and methods It is a single-centre audit of patients with a confirmed diagnosis of breast carcinoma referred to our FCC from January 2017 to 2020. All patients underwent pretest counselling. Genetic testing was done by multigene panel testing by next-generation sequencing along with reflex multiplication ligation-dependent probe amplification for BRCA1 and 2. The variants were classified based on American College of Medical Genetics guidelines. Demographic and clinicopathological details were extracted from the case record files. Results One hundred and fifty-five patients were referred to the FCC and underwent pretest counselling. A total of 99 (63.9%) patients underwent genetic testing. Among them, 62 patients (62/99 = 62.6%) had a germline variant. A pathogenic/likely pathogenic (P/LP) germline variant was identified in 41 (41.4%) of the patients who underwent testing. Additional variants of unknown significance (VUS) were identified in seven patients who also carried a P/LP variant. VUS alone was detected in 21 patients (21/99 = 21.2%). Among the P/LP pathogenic variants (PV), BRCA 1 PV were seen in 27 patients (65.8%), BRCA 2 variants in 7 patients (17.1%), ATM variants in 3 patients (7.3%) and RAD51, TP53, CHEK2 and HMMR in 1 patient each. Variants were significantly more common in patients with a family history (FH) of malignancy than those without FH (58.5% versus 29.5%; p = 0.013). Age and triple-negative histology were not found to be significantly associated with the occurrence of P/LP PVs. Conclusion We report a 41% P/LP variant rate in our selected cohort of breast cancer patients, with variants in BRCA constituting 83% and non-BRCA gene variants constituting 17%.
Collapse
Affiliation(s)
- Raja Pramanik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sindhura Chitikela
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akash Kumar
- Department of Medical Oncology, National Cancer Institute, NCI Jhajjar 124105, India
| | - Ritu Gupta
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - D N Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Aparna Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashutosh Mishra
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Babul Bansal
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
4
|
Ivanov M, Sharova M, Olsen A, Lebedeva A, Ignatova E, Mouse G, Mileyko V. Letter to the Editor: CHEK2 I157T - Pluto Among Numerous Low-Risk Genetic Factors Requiring Discharge From a Range of Pathogenic Variants? J Natl Compr Canc Netw 2022; 20:xxv. [PMID: 35130501 DOI: 10.6004/jnccn.2021.7103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Maxim Ivanov
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Moscow Institute of Physics of Technology, Dolgoprudny, Russia
| | - Margarita Sharova
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Research and Counselling Department, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Ekaterina Ignatova
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Department of Chemotherapy No. 2, Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia; and.,Department of Oncogenetics, Institute of Higher and Additional Professional Education, Research Centre for Medical Genetics, Moscow, Russia
| | | | | |
Collapse
|
5
|
Mittal A, Deo SVS, Gogia A, Batra A, Kumar A, Bhoriwal S, Deb KS, Dhamija E, Thulkar S, Ramprasad VL, Olopade O, Pramanik R. Profile of Pathogenic Mutations and Evaluation of Germline Genetic Testing Criteria in Consecutive Breast Cancer Patients Treated at a North Indian Tertiary Care Center. Ann Surg Oncol 2021; 29:1423-1432. [PMID: 34601666 PMCID: PMC8487333 DOI: 10.1245/s10434-021-10870-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Background The burden of hereditary breast cancer in India is not well defined. Moreover, genetic testing criteria (National Comprehensive Cancer Network [NCCN] and Mainstreaming Cancer Genetics [MCG] Plus) have never been validated in the Indian population. Methods All new female breast cancer patients from 1st March 2019 to 28th February 2020 were screened. Those providing informed consent and without previous genetic testing were recruited. Multigene panel testing (107 genes) by next-generation sequencing was performed for all patients. The frequency of pathogenic/likely pathogenic (P/LP) mutations between patients qualifying and not qualifying the testing criteria was compared and their sensitivity was computed. Results Overall, 275 breast cancer patients were screened and 236 patients were included (median age 45 years); 30 patients did not consent and 9 patients previously underwent genetic testing. Thirty-four (14%) women had a positive family history and 35% had triple-negative breast cancer. P/LP mutations were found in 44/236 (18.64%) women; mutations in BRCA1 (22/47, 46.8%) and BRCA2 (9/47, 19.1%) were the most common, with 34% of mutations present in non-BRCA genes. Patients qualifying the testing criteria had a higher risk of having a P/LP mutation (NCCN: 23.6% vs. 7.04%, p = 0.03; MCG plus: 24.8% vs. 7.2%, p = 0.01). The sensitivity of the NCCN criteria was 88.6% (75.4–96.2) and 86.36% (72.65–94.83) for MCG plus. More than 95% sensitivity was achieved if all women up to 60 years of age were tested. Cascade testing was performed in 31 previous (16/44 families), with 23 testing positive. Conclusions The frequency of P/LP mutations in India is high, with significant contribution of non-BRCA genes. Testing criteria need modification to expand access to testing. Supplementary Information The online version contains supplementary material available at 10.1245/s10434-021-10870-w.
Collapse
Affiliation(s)
- Abhenil Mittal
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Batra
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Koushik Sinha Deb
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Dhamija
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Thulkar
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | - Olufunmilayo Olopade
- Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Raja Pramanik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Fan X, Wynn J, Shang N, Liu C, Fedotov A, Hallquist MLG, Buchanan AH, Williams MS, Smith ME, Hoell C, Rasmussen-Torvik LJ, Peterson JF, Wiesner GL, Murad AM, Jarvik GP, Gordon AS, Rosenthal EA, Stanaway IB, Crosslin DR, Larson EB, Leppig KA, Henrikson NB, Williams JL, Li R, Hebbring S, Weng C, Shen Y, Crew KD, Chung WK. Penetrance of Breast Cancer Susceptibility Genes From the eMERGE III Network. JNCI Cancer Spectr 2021; 5:pkab044. [PMID: 34377931 PMCID: PMC8346699 DOI: 10.1093/jncics/pkab044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Background Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions. Methods We studied the penetrance and clinical outcomes of 7 breast cancer susceptibility genes (BRCA1, BRCA2, TP53, CHEK2, ATM, PALB2, and PTEN) in almost 13 458 participants unselected for personal or family history of breast cancer. We identified 242 female participants with pathogenic or likely pathogenic variants in 1 of the 7 genes for penetrance analyses, and 147 women did not previously know their genetic results. Results Out of the 147 women, 32 women were diagnosed with breast cancer at an average age of 52.8 years. Estimated penetrance by age 60 years ranged from 17.8% to 43.8%, depending on the gene. In clinical-impact analysis, 42.3% (95% confidence interval = 31.3% to 53.3%) of women had taken actions related to their genetic results, and 2 new breast cancer cases were identified within the first 12 months after genetic results disclosure. Conclusions Our study provides population-based penetrance estimates for the understudied genes CHEK2, ATM, and PALB2 and highlights the importance of using unselected populations for penetrance studies. It also demonstrates the potential clinical impact of genetic testing to improve health care through early diagnosis and preventative screening.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ning Shang
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Cong Liu
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Fedotov
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Maureen E Smith
- Department of Medicine, Northwestern University, Chicago Feinberg School of Medicine, Chicago, IL, USA
| | - Christin Hoell
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Josh F Peterson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Georgia L Wiesner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea M Murad
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - Adam S Gordon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - Ian B Stanaway
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington Medical Center, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Kathleen A Leppig
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Nora B Henrikson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Rongling Li
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic, Marshfield, WI, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Katherine D Crew
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
8
|
PEG3 mutation is associated with elevated tumor mutation burden and poor prognosis in breast cancer. Biosci Rep 2021; 40:225944. [PMID: 32729618 PMCID: PMC7419805 DOI: 10.1042/bsr20201648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is the second most common malignancy in women and considered as a severe health burden. PEG3 mutations have been observed in several cancers. However, the associations of PEG3 mutation with tumor mutation burden (TMB) and prognosis in breast cancer have not been investigated. Methods: In our study, the somatic mutation data of 986 breast cancer patients from The Cancer Genome Atlas (TCGA) were analyzed. Results: It showed that PEG3 had a relatively high mutation rate (2%). After calculated the TMB in PEG3 mutant and PEG3 wild-type groups, we found the TMB value was significantly higher in PEG3 mutant samples than that in PEG3 wild-type samples (P = 5.6e-07), which was independent of the confounding factors including age, stage, mutations of BRCA1, BRCA2 and POLE (odd ratio, 0.45; 95% CI, 0.20–0.98; P=0.044). Survival analysis revealed that PEG3 mutant samples had inferior survival outcome compared with the PEG3 wild-type samples after adjusted for the confounding factors above (hazard ratio, 0.27; 95% CI: 0.12–0.57; P<0.001). Conclusion: These results illustrated that PEG3 mutation was associated with high TMB and inferior prognosis, suggesting PEG3 mutation might play a guiding role in prognosis prediction and immunotherapy selection in breast cancer.
Collapse
|
9
|
Identification of Variants (rs11571707, rs144848, and rs11571769) in the BRCA2 Gene Associated with Hereditary Breast Cancer in Indigenous Populations of the Brazilian Amazon. Genes (Basel) 2021; 12:genes12020142. [PMID: 33499154 PMCID: PMC7911168 DOI: 10.3390/genes12020142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/09/2022] Open
Abstract
Estimates show that 5–10% of breast cancer cases are hereditary, caused by genetic variants in autosomal dominant genes; of these, 16% are due to germline mutations in the BRCA1 and BRCA2 genes. The comprehension of the mutation profile of these genes in the Brazilian population, particularly in Amazonian Amerindian groups, is scarce. We investigated fifteen polymorphisms in the BRCA1 and BRCA2 genes in Amazonian Amerindians and compared the results with the findings of global populations publicly available in the 1000 Genomes Project database. Our study shows that three variants (rs11571769, rs144848, and rs11571707) of the BRCA2 gene, commonly associated with hereditary breast cancer, had a significantly higher allele frequency in the Amazonian Amerindian individuals in comparison with the African, American, European, and Asian groups analyzed. These data outline the singular genetic profiles of the indigenous population from the Brazilian Amazon region. The knowledge about BRCA1 and BRCA2 variants is critical to establish public policies for hereditary breast cancer screening in Amerindian groups and populations admixed with them, such as the Brazilian population.
Collapse
|
10
|
Huang X, Shao D, Wu H, Zhu C, Guo D, Zhou Y, Chen C, Lin Y, Lu T, Zhao B, Wang C, Sun Q. Genomic Profiling Comparison of Germline BRCA and Non- BRCA Carriers Reveals CCNE1 Amplification as a Risk Factor for Non- BRCA Carriers in Patients With Triple-Negative Breast Cancer. Front Oncol 2020; 10:583314. [PMID: 33194720 PMCID: PMC7662137 DOI: 10.3389/fonc.2020.583314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Differences in genomic profiling and immunity-associated parameters between germline BRCA and non-BRCA carriers in TNBC with high tumor burden remain unexplored. This study aimed to compare the differences and explore potential prognostic predictors and therapeutic targets. Methods: The study cohort included 21 consecutive TNBC cases with germline BRCA1/2 mutations and 54 non-BRCA carriers with a tumor size ≥ 2 cm and/or ≥1 affected lymph nodes. Differences in clinicopathological characteristics and genomic profiles were analyzed through next-generation sequencing. Univariate Kaplan-Meier analysis and Cox regression model were applied to survival analysis. Immunohistochemistry was used to confirm the consistency between CCNE1 amplification and cyclin E1 protein overexpression. Results: The cohort included 16 and five patients with germline BRCA1 and BRCA2 mutations, respectively. Patients with germline BRCA1/2 mutations were diagnosed at a significantly younger age and were more likely to have a family history of breast and/or ovarian cancer. Six non-BRCA carriers (11.11%) carried germline mutations in other cancer susceptibility genes, including five mutations in five homologous recombination repair (HRR) pathway genes (9.26%) and one mutation in MSH3 (1.85%). Somatic mutations in HRR pathway genes were found in 22.22 and 14.29% of the non-BRCA and BRCA carriers, respectively. PIK3CA missense mutation (p = 0.046) and CCNE1 amplification (p = 0.2) were found only in the non-BRCA carriers. The median tumor mutation burden (TMB) was 4.1 Muts/Mb, whereas none of the cases had high microsatellite instability (MSI). BRCA status did not affect disease-free survival (DFS, p = 0.15) or overall survival (OS, p = 0.52). CCNE1 amplification was an independent risk factor for DFS in non-BRCA carriers with TNBC (HR 13.07, 95% CI 2.47-69.24, p = 0.003). Consistency between CCNE1 amplification and cyclin E1 protein overexpression was confirmed with an AUC of 0.967 for cyclin E1 signal intensity. Conclusions: We found differences in genetic alterations between germline BRCA and non-BRCA carriers with TNBC and a high tumor burden. TMB and MSI may not be suitable predictors of TNBC for immune checkpoint inhibitors. Notably, CCNE1 amplification is a novel potential prognostic marker and therapeutic target for non-BRCA carriers with TNBC. Cyclin E1 may be used instead of CCNE1 to improve clinical applicability.
Collapse
Affiliation(s)
- Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | | | - Dan Guo
- Clinical Biobank, Medical Science Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tao Lu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Bin Zhao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
11
|
Kim DY, Park HL. Breast Cancer Risk Prediction in Korean Women: Review and Perspectives on Personalized Breast Cancer Screening. J Breast Cancer 2020; 23:331-342. [PMID: 32908785 PMCID: PMC7462811 DOI: 10.4048/jbc.2020.23.e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/22/2020] [Indexed: 01/20/2023] Open
Abstract
Due to an increasing proportion of older individuals and the adoption of a westernized lifestyle, the incidence rate of breast cancer is expected to rapidly increase within the next 10 years in Korea. The National Cancer Screening Program (NCSP) of Korea recommends biennial breast cancer screening through mammography for women aged 40-69 years old and according to individual risk and preference for women above 70 years old. There is an ongoing debate on how to most effectively screen for breast cancer, with many proponents of personalized screening, or screening according to individual risk, for women under 70 years old as well. However, to accurately stratify women into risk categories, further study using more refined personalized characteristics, including potentially incorporating a polygenic risk score (PRS), may be needed. While most breast cancer risk prediction models were developed in Western countries, the Korean Breast Cancer Risk Assessment Tool (KoBCRAT) was developed in 2013, and several other risk models have been developed for Asian women specifically. This paper reviews these models compared to commonly used models developed using primarily Caucasian women, namely, the modified Gail, Breast Cancer Surveillance Consortium, Rosner and Colditz, and Tyrer-Cuzick models. In addition, this paper reviews studies in which PRS is included in risk prediction in Asian women. Finally, this paper discusses and explores strategies toward development and implementation of personalized screening for breast cancer in Korea.
Collapse
Affiliation(s)
- Do Yeun Kim
- Division of Medical Oncology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Hannah Lui Park
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Yildiz Tacar S, Bozgeyik E, Seber ES, Yetisyigit T, Tozkir H, Avci O, Arslan A. Next generation sequencing analysis of BRCA1 and BRCA2 identifies novel variations in breast cancer. Life Sci 2020; 261:118334. [PMID: 32846166 DOI: 10.1016/j.lfs.2020.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022]
Abstract
Mutations in two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified to be the most important predisposing factors for the development of breast cancer. Thus, BRCA1/2 testing is a well-established method of choice for the assessment of developing breast cancer. Accordingly, here we aimed to report novel BRCA1/2 variations and distribution of previously known mutations and their association with the clinical course of breast cancer disease. A total of 287 breast cancer patients were enrolled from January 2017 through December 2019. Of these patients, 50 of them were identified to be positive for BRCA1/2. Next Generation Sequencing analysis was performed for the screening of exonic and intronic variations of BRCA1/BRCA2 genes. Notably, novel variations of 4448 G > A (Ser1843Asn) in BRCA1, and 982dupA (Thr328AspfsTer) and 7588C > T (Gln2530Ter) in BRCA2 gene were identified. The most common variations in BRCA1 gene were 5152 + 66G > A, 442-34C > T and 5266dupC. In BRCA2 gene, the most common variations were 9097dupA, 67 + 1G > A and 1114A > C. Novel variations of BRCA1 and BRCA2 genes were identified in breast cancer and might be useful predisposing factors in breast cancer diagnosis.
Collapse
Affiliation(s)
- Seher Yildiz Tacar
- Department of Medical Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey; Department of Medical Oncology, Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Esra Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Erdogan Selcuk Seber
- Department of Medical Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Tarkan Yetisyigit
- Department of Medical Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Hilmi Tozkir
- Department of Medical Genetics, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Okan Avci
- Department of Medical Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ahmet Arslan
- Department of Medical Genetics, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
13
|
Pirim D, Kaya N, Yıldırım EU, Sag SO, Temel SG. Characterization and in silico analyses of the BRCA1/2 variants identified in individuals with personal and/or family history of BRCA-related cancers. Int J Biol Macromol 2020; 162:1166-1177. [PMID: 32599251 DOI: 10.1016/j.ijbiomac.2020.06.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/05/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Pathogenic variants in the coding regions of the BRCA1/2 lead dysfunctional or nonfunctional BRCA proteins however the contribution of non-coding BRCA1/2 variants to BRCA-related disease risk has not been fully elucidated. Thus, we characterized the functional impact of both coding and non-coding BRCA1/2 variants identified in individuals with personal and/or family history of BRCA-related cancers. The data were produced by resequencing the exons and exon-intron junctions of the BRCA1/2 in 125 individuals and were comprehensively analyzed by using bioinformatics tools and databases. A total of 96 variants (59 coding and 37 non-coding) including 7 novel variants were identified and analyzed for their functional importance. We identified 11 missense variants that potentially affect protein function; 22 variants were likely to alter different types of posttranslational modifications. Also, multiple non-coding BRCA1/2 variants were found to reside in the critical regulatory regions that have the potential to act as eQTLs and affect alternative splicing. The results of our study shed light on the possible contributions of not only coding variants but also non-coding BRCA1/2 variants in BRCRA-related cancers. Further investigation is required to fully understand their potential associations with phenotypes which may ultimately lead their utilization on cancer management as a biomarker.
Collapse
Affiliation(s)
- Dilek Pirim
- Bursa Uludag University, Department of Molecular Biology and Genetics, Bursa, Turkey; Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey.
| | - Niyazi Kaya
- Bursa Uludag University, Institute of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Bursa, Turkey
| | - Elif Uz Yıldırım
- Bursa Uludag University, Department of Molecular Biology and Genetics, Bursa, Turkey; Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey
| | - Sebnem Ozemri Sag
- Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey
| | - Sehime Gulsun Temel
- Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey; Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Histology and Embryology, Bursa, Turkey.
| |
Collapse
|
14
|
Liao Y, Tu C, Song X, Cai L. Case report: Analysis of BRCA1 and BRCA2 gene mutations in a hereditary ovarian cancer family. J Assist Reprod Genet 2020; 37:1489-1495. [PMID: 32356124 PMCID: PMC7311593 DOI: 10.1007/s10815-020-01783-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Breast cancer susceptibility gene 1/2 (BRCA1/2) is the most important susceptibility gene associated with hereditary ovarian cancer (HOC). We aimed to screen BRAC1 and BRAC2 gene mutations in a member of a hereditary ovarian cancer family in China, and to analyze the structure and function of the mutant protein. METHODS A typical HOC family was selected. Blood samples and pathological tissue samples were taken from the female members of the family. Blood samples from two patients with sporadic ovaries of the same pathological type were taken as a control group. After RNA extraction, PCR amplification was applied and the PCR products were directly sequenced and aligned, prediction and analysis of protein structure and molecular conformation that may be caused by BRCA1/2 mutation. RESULTS The whole gene analysis of BRCA1 and BRCA2 in ovarian cancer patients in the family showed that there were 8 mutations in BRCA1 whole gene sequencing, including 3 nonsense mutations (2314C>T, 2543T>C, 4540T>C); two mutations have been recorded, which are associated with cervical cancer (2844C>T) and endometriosis (3345A>G); three newly discovered mutations (3780A>G, 5069A>G, 3326A>T). Among them, 3780A>G and 5069A>G caused amino acid changes, while 3326A>T mutation caused Arg mutation to stop codon. A total of 7 mutations were detected in BRCA2 whole-genome sequencing, including 5 non-significant mutations (3623A>G, 4034T>C, 4790A>G, 6740G>C, 7469A>G); one no-record mutation (1716T>A), and 1 recorded mutation (1342A>C), which was associated with breast cancer and ovarian cancer. BRCA1 (3326A>T) and BRCA2 (1342A>C) mutations were co-existing in patients (II1, II3, and II5) identified as serous adenocarcinoma grade II. Two cases of ovarian serous cystadenocarcinoma with no history of family tumors were normalized for BRCA1/2 gene sequencing. In the gene detection of III generation female, four females with BRCA2 (1342A>C) mutation were found, and one of them also carried the BRCA1 (3326A>T) mutation, who can be considered a high-risk group of HOC in this family. Online protein structure predictions revealed that BRCA1 (3326A>T) mutations mutated AGA at this site to TGA resulting in a translated Arg (arginine) mutation as a stop codon, while BRCA2 (1342A>C) mutated AAT at this site to CAT resulting in a translated Asn mutation to His. CONCLUSION The BRCA1 (3326A>T) and BRCA2 (1342A>C) were detected in the HOC family, which may be the susceptibility gene of the family's HOC. The BRCA1/2 gene screening may be possible to obtain high-risk populations in this family.
Collapse
Affiliation(s)
- Ying Liao
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China
| | - Xiaoxia Song
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
15
|
Chen B, Zhang G, Li X, Ren C, Wang Y, Li K, Mok H, Cao L, Wen L, Jia M, Li C, Guo L, Wei G, Lin J, Li Y, Zhang Y, Han-Zhang H, Liu J, Lizaso A, Liao N. Comparison of BRCA versus non-BRCA germline mutations and associated somatic mutation profiles in patients with unselected breast cancer. Aging (Albany NY) 2020; 12:3140-3155. [PMID: 32091409 PMCID: PMC7066887 DOI: 10.18632/aging.102783] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
The data on the phenotypes associated with some rare germline mutations in Chinese breast cancer patients are limited. The difference in somatic mutation profiles in breast cancer patients with germline BRCA and non-BRCA mutations remains unexplored. We interrogated the germline and somatic mutational profile of 524 Chinese breast cancer patients with various stages unselected for predisposing factors using a panel consisting of 520 cancer-related genes including 62 cancer susceptibility genes. We divided the patients into three groups according to germline mutations: Germline-BRCA1/2, Germline-others (non-BRCA) and Others (non-carriers). A total of 58 patients (11.1%) carried 76 likely pathogenic or pathogenic (LP/P) germline variants in 15 cancer predisposition genes. Germline BRCA1/2 mutations were detected from 29 (5.53%) patients; with 11 (2.10%) BRCA1 carriers and 18 (3.44%) BRCA2 carriers. In addition, LP/P germline mutations were detected in other genes including MUTYH (n=4), PALB2 (n=4), ATM (n=3), BRIP1 (n=3), CDH1 (n=3), RAD51C (n=3), CHEK2 (n=2), FANCA (n=2), PMS2 (n=2), TP53 (n=2), FANCI (n=1), FANCL (n=1) and PTEN (n=1). At least one variant of uncertain significance (VUS) was identified in 490 (93.5%) patients. Young age (P=0.011), premenopausal status (P=0.013), and breast/ovarian cancer family history (P=0.001) were correlated with germline mutations. Germline-BRCA1/2 group was detected with more missense (P=0.02) and less copy-number amplification (P=0.04) than Germline-others group. Meanwhile, Germline-others group and Others group are very similar (P>0.05). The mutation rates of AKT1, CCND1, FGFR1, and PIK3CA were different among the three groups. By investigating all breast and ovarian cancer-related genes listed in the US genetic guidelines, we identified 15 cancer susceptibility genes frequently mutated in the germline of our population and must be included in cancer predisposition screening. Our study contributed a better understanding of the tumor characteristics of patients with LP/P germline mutations.
Collapse
Affiliation(s)
- Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuerui Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chongyang Ren
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Li Cao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Minghan Jia
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Cheukfai Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Liping Guo
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiali Lin
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yingzi Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuchen Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | | | - Jing Liu
- Burning Rock Biotech, Guangzhou, China
| | | | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Kim D, Han SK, Lee K, Kim I, Kong J, Kim S. Evolutionary coupling analysis identifies the impact of disease-associated variants at less-conserved sites. Nucleic Acids Res 2019; 47:e94. [PMID: 31199866 PMCID: PMC6895274 DOI: 10.1093/nar/gkz536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies have discovered a large number of genetic variants in human patients with the disease. Thus, predicting the impact of these variants is important for sorting disease-associated variants (DVs) from neutral variants. Current methods to predict the mutational impacts depend on evolutionary conservation at the mutation site, which is determined using homologous sequences and based on the assumption that variants at well-conserved sites have high impacts. However, many DVs at less-conserved but functionally important sites cannot be predicted by the current methods. Here, we present a method to find DVs at less-conserved sites by predicting the mutational impacts using evolutionary coupling analysis. Functionally important and evolutionarily coupled sites often have compensatory variants on cooperative sites to avoid loss of function. We found that our method identified known intolerant variants in a diverse group of proteins. Furthermore, at less-conserved sites, we identified DVs that were not identified using conservation-based methods. These newly identified DVs were frequently found at protein interaction interfaces, where species-specific mutations often alter interaction specificity. This work presents a means to identify less-conserved DVs and provides insight into the relationship between evolutionarily coupled sites and human DVs.
Collapse
Affiliation(s)
- Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
17
|
Al-Eitan LN, Rababa'h DM. Correlation between a variable number tandem repeat (VNTR) polymorphism in SMYD3 gene and breast cancer: A genotype-phenotype study. Gene 2019; 728:144281. [PMID: 31836525 DOI: 10.1016/j.gene.2019.144281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023]
Abstract
Genetic predisposition to breast cancer (BC) has become one of the most studied aspects of the disease. Advances in the field of cancer research have revealed the role of different genetic polymorphisms within genes of interest in the development of BC. This study aimed to explore the impact of a variable number tandem repeat (VNTR) genetic variant found within the SET and MYND domain containing protein 3 (SMYD3) gene on BC risk in Jordan and examine key clinical and pathological prognostic factors. Genotyping of blood samples from 180 cases with breast cancer and 180 healthy individuals from the Jordanian population was carried out via a combination of PCR and agarose gel electrophoresis. A highly significant association was found at level of genotype (P-value = 0.009) and allele (P-value = 0.0001) between BC development and the VNTR variant in the SMYD3 gene among Jordanian women. Moreover, we found that the VNTR of SMYD3 gene may interfere with BC risk among patients with different immunohistochemistry (IHC) profiles (P-value < 0.05). This study reported that there is a significant correlation between BC development and the VNTR in the SMYD3 gene. These findings can help alleviate the burden of BC in developing countries including Jordan and to fill the gaps in current literature. Since this study was carried out on Jordanian Arabs, more studies on the link between BC and the SMYD3 VNTR variant are recommended to determine this polymorphism's impact on other ethnic groups.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Doaa M Rababa'h
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
18
|
Dai X, Zhang X, Lu P. Toward a holistic view of multiscale breast cancer molecular biomarkers. Biomark Med 2019; 13:1509-1533. [PMID: 31668082 DOI: 10.2217/bmm-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Powered by rapid technology developments, biomarkers become increasingly diverse, including those detected at genomic, transcriptomic, proteomic, metabolomic and cellular levels. While diverse sets of biomarkers have been utilized in breast cancer predisposition, diagnosis, prognosis, treatment and management, recent additions derived from lincRNA, circular RNA, circulating DNA together with its methylated and hydroxymethylated forms and immune signatures are likely to further transform clinical practice. Here, we take breast cancer as an example of heterogeneous diseases that require many informed decisions from treatment to care to review the huge variety of biomarkers. By assessing the advantages and limitations of modern biomarkers in diverse use scenarios, this article outlines the prospects and challenges of releasing complimentary advantages by augmentation of multiscale molecular biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Peihua Lu
- Wuxi People's Hospital, Nan Chang Qu, Wuxi, Jiangsu, PR China
| |
Collapse
|
19
|
Sun Y, Chen P, Wu J, Xiong Z, Liu Y, Liu J, Li H, Li B, Jin T. Association of polymorphisms in LOC105377871 and CASC16 with breast cancer in the northwest Chinese Han population. J Gene Med 2019; 22:e3131. [PMID: 31655495 DOI: 10.1002/jgm.3131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancer represents the cancer with the highest incidence and mortality among women in the world, and its pathogenesis is complex. Single nucleotide polymorphisms (SNPs) are one of the factors that influence the risk of breast cancer. The present study aimed to investigate the effects of LOC105377871 and CASC16 polymorphisms on the risk of breast cancer in the northwest Chinese Han population. METHODS We selected 503 breast cancer patients and 503 healthy controls for the present study. Genotyping was performed using the Agena MassARRAY system (Agenea Bioscience, San Diego, CA, USA) and we evaluated the association between SNPs (rs17530068 and rs4784227) and the risk of breast cancer in four genetic models. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS It was found that the rs17530068 increased the breast cancer risk in log-additive model (p = 0.047, OR = 1.23, 95% CI = 1.00-1.50). After stratification, the "T" allele of rs4784227 increased the risk of lymph node metastasis in breast cancer patients (allele: p = 0.025, OR = 1.51, 95% CI = 1.05-2.17; codominant model: p = 0.008, OR = 1.99, 95% CI = 1.20-3.31; dominant model: p = 0.008, OR = 1.94, 95% CI = 1.19-3.16; log-additive model: p = 0.023, OR = 1.52, 95% CI = 1.06-2.19). CONCLUSIONS The results of the present study show that, in the northwest Chinese Han population, SNP rs17530068 (LOC105377871) increases the risk of breast cancer and SNP rs4784227 (CASC16) promotes lymph node metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Peng Chen
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. The influence of an IL-4 variable number tandem repeat (VNTR) polymorphism on breast cancer susceptibility. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:201-207. [PMID: 31692576 PMCID: PMC6716593 DOI: 10.2147/pgpm.s220571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 01/20/2023]
Abstract
Backgrounds Breast cancer (BC) is one of the most widespread cancers globally. Understanding the etiology of BC may help in determining the various risk factors involved in its malignancy. Certain genetic mutations are considered to play a key role in increasing the risk of BC. Objectives In this study, we explored the correlation between a variable number tandem repeat (VNTR) polymorphism in the IL-4 gene and BC. Methods PCR and subsequent gel electrophoresis were used to genotype this variant in 360 Jordanian women (180 BC patients and 180 controls). In addition, phenotype–genotype analysis was carried out. Results Our findings illustrate that there is no significant relationship between the variant genotypes in the IL-4 gene and BC among Jordanian females. Other than body mass index and tumor differentiation (p< 0.05), none of the clinical and pathological parameters of BC patients exhibited any association with the variant genotypes. Conclusions From this study, we propose that the IL-4 genetic variant does not impact BC development and progression but that it could influence the disease prognosis.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A Alghamdi
- Anatomy Department, Faculty of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordanian Royal Medical Services (RMS), Amman 11118, Jordan
| |
Collapse
|
21
|
Samtani R, Saksena D. BRCA gene mutations: A population based review. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Singh DB. The Impact of Pharmacogenomics in Personalized Medicine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:369-394. [PMID: 31485703 DOI: 10.1007/10_2019_110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in Pharmacogenomics have made it possible to understand the reasons behind the different response of a drug. Discovery of genetic variants and its association with the varying response of drug provide the basis for recommending a drug and its dose to an individual patient. Genetic makeup-based prescription, design, and implementation of therapy not only improve the outcome of treatments but also reduce the risk of toxicity and other adverse effects. A better understanding of individual variations and their effect on drug response, metabolism excretion, and toxicity will replace the trial-and-error approach of treatment. Evidence of the clinical utility of pharmacogenetics testing is only available for a few medications, and FDA labels only require pharmacogenetics testing for a small number of drugs. Although there is a great promise, there are not many examples where Pharmacogenomics impacts clinical utility. Some genetic variants related to different diseases have been reported, and many have not been studied yet. The information related to the outcome of treatment with a particular drug and a genetic variant can be used to release a warning/label for the use of that drug. There are many limitations in the way of implementing the goal of personalized medicine. Future advances in the field of genomics, diagnosis approaches, data analysis, clinical decision-making, and sustainable business model for personalization of therapy can speed up the individualization of therapy based on genetic makeup.
Collapse
Affiliation(s)
- Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
23
|
Cheng P, Wang Z, Hu G, Huang Q, Han M, Huang J. A prognostic 4-gene expression signature for patients with HER2-negative breast cancer receiving taxane and anthracycline-based chemotherapy. Oncotarget 2017; 8:103327-103339. [PMID: 29262565 PMCID: PMC5732731 DOI: 10.18632/oncotarget.21872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a heterogeneous group of diseases with diverse clinicopathological and molecular features. At present, chemo-resistance still poses a major obstacle to successful treatment of HER-2 negative breast cancer. Reliable biomarkers are urgently needed to accurately predict the therapeutic sensitivity and prognosis of such patients. In this study, we identified 3145 distant relapse-free survival (DRFS) associated genes in 310 patients with HER-2 negative breast cancer receiving taxane and anthracycline-based chemotherapy in the GSE25055 dataset using univariate survival analysis. Four genes (SRPK1, PCCA, PRLR and FBP1) were further selected by a robust likelihood-based survival model. A risk score model was then constructed with the regression coefficients of the four signature genes. Patients in the training set were successfully divided into high- and low-risk groups with significant differences in DRFS between the two groups. The predictive value was further validated in GSE25065 dataset and similar results were observed. Moreover, the 4-gene signature was proved to have superior prognostic power compared with several clinical signatures such as tumor size, lymph node invasion, TNM stage and PAM50 signature. Our findings indicated that the 4-gene signature was a robust prognostic marker with a good prospect of clinical application for HER-2 negative breast cancer patients receiving taxane-anthracycline combination therapy.
Collapse
Affiliation(s)
- Pu Cheng
- Department of Surgical Oncology, Second Affiliated Hospital and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Department of Surgical Oncology, Second Affiliated Hospital and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang, China
| | - Qi Huang
- Department of Surgical Oncology, Second Affiliated Hospital and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjiao Han
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jian Huang
- Department of Surgical Oncology, Second Affiliated Hospital and Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China.,Gastroenterology Institute, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|