1
|
Liao W, Wang P, He Y, Liu Z, Wang L. Investigation of the underlying mechanism of Buyang Huanwu decoction in ischemic stroke by integrating systems pharmacology-proteomics and in vivo experiments. Fitoterapia 2024; 175:105935. [PMID: 38580032 DOI: 10.1016/j.fitote.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 51006, People's Republic of China
| | - Yingying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipid, Guangzhou 510240, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China.
| |
Collapse
|
2
|
Chen J, Zhou J, Jiang Y, Wang Y, Chen C, Jiang T, Du J. Inositol 1,4,5-trisphosphate receptor gene variants are related to the risk of breast cancer in a Chinese population. J Gene Med 2023; 25:e3463. [PMID: 36350267 DOI: 10.1002/jgm.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mammalian inositol 1,4,5-trisphosphate receptor (ITPR) genes encode ubiquitously expressed endoplasmic reticulum Ca2+ channels that have recently been shown to be closely linked to the pathogenesis of several cancers. However, few studies to date have explored associations between ITPR gene family single nucleotide polymorphisms (SNPs) and breast cancer risk. METHODS In the present case-control study, 12 SNPs in the potential functional regions of the ITPR1, ITPR2, and ITPR3 genes were genotyped using an Illumina Infinium® Beadchip in 2095 Chinese women (1032 cases and 1063 controls). RESULTS Multivariate logistic regression analyses indicated that a missense SNP in the ITPR3 coding region (rs2229642) was significantly related to breast cancer risk when using an additive model in this study (rs2229642-adjusted odds ratio = 1.40, 95% confidence interval = 1.12-1.74, p = 2.97 × 10-3 ). Expression quantitative trait loci analyses indicated that the SNP rs2229642 was associated with reduced ITPR3 expression levels (p = 3.2 × 10-7 ) and with marked reductions in the expressions of several proximal genes, including BAK1, GRM4, HLA-DOB, and UQCC2 (p = 0.013, 0.018, 3.4 × 10-3 , 3.8 × 10-5 ), suggesting that it may further regulate other genes associated with oncogenic susceptibility. Kaplan-Meier analyses indicated that the patients with higher ITPR3 expression exhibited significantly poorer outcomes compared to the patients with lower expression of this gene (hazard ratio = 1.11, 95% confidence interval = 1-1.23, p = 0.046). CONCLUSIONS The results indicated that genetic variant in the coding region of ITPR3 gene may regulate the expressions of its host and some other cancer-related genes, as well as act as potential predictive biomarker for susceptibility to breast cancer in the Chinese population.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang Q, Li X, Qiu J, He Y, Wu J, Li J, Liu W, Han J. A pathway-based mutation signature to predict the clinical outcomes and response to CTLA-4 inhibitors in melanoma. Comput Struct Biotechnol J 2023; 21:2536-2546. [PMID: 37102155 PMCID: PMC10123336 DOI: 10.1016/j.csbj.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has become a powerful clinical strategy for treating melanoma. The relationship between somatic mutations and the clinical benefits of immunotherapy has been widely recognized. However, the gene-based predictive biomarkers are less stable due to the heterogeneity of cancer at the individual gene level. Recent studies have suggested that the accumulation of gene mutations in biological pathways may activate antitumor immune responses. Herein, a novel pathway mutation signature (PMS) was constructed to predict the survival and efficacy of ICI therapy. In a dataset of melanoma patients treated with anti-CTLA-4, we mapped the mutated genes into the pathways and then identified seven significant mutation pathways associated with survival and immunotherapy response, which were used to construct the PMS model. According to the PMS model, the patients in the PMS-high group showed better overall survival (hazard ratio (HR) = 0.37; log-rank test, p < 0.0001) and progression-free survival (HR = 0.52; log-rank test, p = 0.014) than those in the PMS-low group. The PMS-high patients also showed a significantly higher objective response rate to anti-CTLA-4 therapy than the PMS-low patients (Fisher's exact test, p = 0.0055), and the predictive power of the PMS model was superior to that of TMB. Finally, the prognostic and predictive value of the PMS model was validated in two independent validation sets. Our study demonstrated that the PMS model can be considered a potential biomarker to predict the clinical outcomes and response to anti-CTLA-4 therapy in melanoma patients.
Collapse
Affiliation(s)
- Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Jiayue Qiu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, PR China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
| |
Collapse
|
4
|
Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci 2022; 23:ijms23031010. [PMID: 35162934 PMCID: PMC8835635 DOI: 10.3390/ijms23031010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhe Chen
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
5
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
6
|
Shaughnessy M, Lamuraglia G, Klebanov N, Ji Z, Rajadurai A, Kumar R, Flaherty K, Tsao H. Selective uveal melanoma inhibition with calcium channel blockade. Int J Oncol 2019; 55:1090-1096. [PMID: 31545410 PMCID: PMC6776194 DOI: 10.3892/ijo.2019.4873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Uveal malignant melanoma (UMM), the most common primary adult intraocular tumor with a marked metastatic potential, is genetically unique and has unfortunately had few treatment breakthroughs. In this study, we subjected a UMM cell line to high‑throughput library screening with 1,018 FDA‑approved compounds to identify potential UMM‑selective cytotoxic agents. Amlodipine, a dihydropyridine calcium channel blocker (CCB), ranked no. 2 and no. 8 of the most cytotoxic compounds. Thus, we further characterized the differential effects of calcium blockade on UMM and cutaneous malignant melanoma (CMM) lines in vitro using growth inhibition, cell cycle progression, apoptosis and senescence assays. Amlodipine had a significantly higher growth inhibitory potency in UMM (IC50=13.1 µM) than CMM (IC50=15.9 µM, P<0.05) lines. In 3D spherical cell culture, amlodipine treatment significantly impaired tissue volume growth in two UMM lines, but exerted no significant effects among all 3 CMM lines tested. Treatment with 10 and 20 µM amlodipine induced a significant impairment of cell cycle progression and the apoptosis of UMM lines, implicating both of these processes as mediators of the observed growth inhibition in UMM compared to CMM. On the whole, the findings of this study suggest that calcium channel blockade is a potentially effective strategy for selective uveal melanoma targeting.
Collapse
Affiliation(s)
- Michael Shaughnessy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Grace Lamuraglia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Nikolai Klebanov
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Keith Flaherty
- Department of Medicine, Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Center for Melanoma, Harvard Medical School, Boston, MA 02114-2605, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2605, USA
| |
Collapse
|
7
|
Yu X, Zhong P, Han Y, Huang Q, Wang J, Jia C, Lv Z. Key candidate genes associated with BRAF
V600E
in papillary thyroid carcinoma on microarray analysis. J Cell Physiol 2019; 234:23369-23378. [PMID: 31161615 DOI: 10.1002/jcp.28906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Peng Zhong
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Yali Han
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital School of Medicine, Tongji University Shanghai China
| | - Qingqing Huang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| | - Jian Wang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Chengyou Jia
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital School of Medicine, Tongji University Shanghai China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, School of Medicine Tongji University Shanghai China
| |
Collapse
|