1
|
Narayanan A, More AS, Talreja M, Mali AM, Vinay SB, Bapat SA. A novel ITGB8 transcript variant sustains ovarian cancer cell survival through genomic instability and altered ploidy on a mutant p53 background. J Ovarian Res 2024; 17:218. [PMID: 39506768 PMCID: PMC11539462 DOI: 10.1186/s13048-024-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Transcript variants and protein isoforms are central to unique tissue functions and maintenance of homeostasis, in addition to being associated with aberrant states such as cancer, where their crosstalk with the mutated tumor suppressor p53 may contribute to genomic instability and chromosomal rearrangements. We previously identified several novel splice variants in ovarian cancer RNA-sequencing datasets; herein, we aimed to elucidate the biological effects of the Integrin Subunit Beta 8 variant (termed pITGB8-205). METHODS Resolution of the full-length sequence of pITGB8-205 through rapid amplification of cDNA ends (RACE-PCR). Cell cycle analysis and karyotype studies were performed to further explore genomic instability. RNA-seq and proteomics analyses were used to identify the differential expression of the genes. RESULTS This full-length study revealed a unique 5' sequence in pITGB8-205 that differed from the reported ITGB8-205 sequence, suggesting differential regulation of this novel transcript. Under a p53 mutant background, overexpression of pITGB8-205 triggered genetic instability reminiscent of oncogene-induced replicative stress with extensive abnormal mitoses and chromosomal and nuclear aberrations indicative of chromosomal instability, leading to near whole-genome duplication that imposes energy stress on cellular resources. Micronuclei and aneuploidy are striking features of pITGB8-205-overexpressing p53-mutant cells but are not enhanced in p53 wild-type (WT) cells. RNA-seq and proteomics analyses further suggested that p53 inactivation in ovarian cancer provides a permissive intracellular molecular niche for pITGB8-205 to mediate its effects on genomic instability. This observation is pivotal considering that most high-grade serous ovarian carcinoma (HGSC) tumors express mutant p53. The resulting aneuploid clones with enhanced self-renewal and survival capabilities disrupt clonal dominance under stress yet maintain a balance between replicative stress and prosurvival advantages. CONCLUSION pITGB8-205-overexpressing clones sustain ovarian tumor cell survival, achieve homeostasis and are formidable opponents of therapy.
Collapse
Affiliation(s)
- Aravindan Narayanan
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Ankita S More
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Muskan Talreja
- National Centre for Cell Science, Pune, 411007, India
- Institute for Excellence in Higher Education (IEHE), Kaliyasot Dam, Kolar Road, Bhopal, 46202, India
| | | | | | - Sharmila A Bapat
- National Centre for Cell Science, Pune, 411007, India.
- Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
2
|
Sridhar A, More AS, Jadhav AR, Patil K, Mavlankar A, Dixit VM, Bapat SA. Pattern recognition in the landscape of seemingly random chimeric transcripts. Comput Struct Biotechnol J 2023; 21:5153-5164. [PMID: 37920814 PMCID: PMC10618115 DOI: 10.1016/j.csbj.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The molecular and functional diversity generated by chimeric transcripts (CTs) that are derived from two genes is indicated to contribute to tumor cell survival. Several gaps yet exist. The present research is a systematic study of the spectrum of CTs identified in RNA sequencing datasets of 160 ovarian cancer samples in the The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov). Structural annotation revealed complexities emerging from chromosomal localization of partner genes, differential splicing and inclusion of regulatory, untranslated regions. Identification of phenotype-specific associations further resolved a dynamically modulated mesenchymal signature during transformation. On an evolutionary background, protein-coding CTs were indicated to be highly conserved, while non-coding CTs may have evolved more recently. We also realized that the current premise postulating structural alterations or neighbouring gene readthrough generating CTs is not valid in instances wherein the parental genes are genomically distanced. In addressing this lacuna, we identified the essentiality of specific spatiotemporal arrangements mediated gene proximities in 3D space for the generation of CTs. All these features together suggest non-random mechanisms towards increasing the molecular diversity in a cell through chimera formation either in parallel or with cross-talks with the indigenous regulatory network.
Collapse
Affiliation(s)
- Aksheetha Sridhar
- Open Health Systems Laboratory, 9601 Medical Centre Drive, Rockville, MD 20850, US
| | - Ankita S. More
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Amruta R. Jadhav
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Komal Patil
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Anuj Mavlankar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Vaishnavi M. Dixit
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Sharmila A. Bapat
- Open Health Systems Laboratory, 9601 Medical Centre Drive, Rockville, MD 20850, US
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| |
Collapse
|
3
|
Varankar SS, Hari K, Kartika S, Bapat SA, Jolly MK. Cell geometry distinguishes migration‐associated heterogeneity in two‐dimensional systems. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sagar S Varankar
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| | - Sharon Kartika
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur Nadia West Bengal India
| | - Sharmila A Bapat
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| |
Collapse
|
4
|
More MH, Varankar SS, Naik RR, Dhake RD, Ray P, Bankar RM, Mali AM, Subbalakshmi AR, Chakraborty P, Jolly MK, Bapat SA. A Multistep Tumor Growth Model of High-Grade Serous Ovarian Carcinoma Identifies Hypoxia-Associated Signatures. Cells Tissues Organs 2022; 213:79-95. [PMID: 35970135 DOI: 10.1159/000526432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is associated with late-stage disease presentation and poor prognosis, with a limited understanding of early transformation events. Our study analyzes HGSC tumor progression and organ-specific metastatic dissemination to identify hypoxia-associated molecular, cellular, and histological alterations. Clinical characteristics of the HGSC were replicated in orthotopic xenografts, which involve metastatic dissemination and the prevalence of group B tumors (volume: >0.0625 ≤ 0.5 cm3). Enhanced hyaluronic acid (HA) deposition, expanded tumor vasculature, and increased necrosis contributed to the remodeling of tumor tissue architecture. The proliferative potential of tumor cells and the ability to form glands were also altered during tumor growth. Flow cytometry and label chase-based molecular profiling across the tumor regenerative hierarchy identified the hypoxia-vasculogenic niche and the hybrid epithelial-mesenchymal tumor-cell state as determinants of self-renewal capabilities of progenitors and cancer stem cells. A regulatory network and mathematical model based on tumor histology and molecular signatures predicted hypoxia-inducible factor 1-alpha (HIF1A) as a central node connecting HA synthesis, epithelial-mesenchymal transition, metabolic, vasculogenic, inflammatory, and necrotic pathways in HGSC tumors. Thus, our findings provide a temporal resolution of hypoxia-associated events that sculpt HGSC tumor growth; an in-depth understanding of it may aid in the early detection and treatment of HGSC.
Collapse
Affiliation(s)
- Madhuri H More
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Sagar S Varankar
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Rutika R Naik
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Rahul D Dhake
- Department of Histopathology, Inlaks and Budhrani Hospital, Morbai Naraindas Cancer Institute, Pune, India
| | - Pritha Ray
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Rahul M Bankar
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Avinash M Mali
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | | | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 2022; 39:279-290. [PMID: 34993766 DOI: 10.1007/s10585-021-10139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.,UG Programme, Indian Institute of Science, Bangalore, 560012, India
| | - Bazella Ashraf
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
6
|
Kalra RS, Soman GS, Parab PB, Mali AM, Varankar SS, Naik RR, Kamble SC, Dhanjal JK, Bapat SA. A monoclonal antibody against annexin A2 targets stem and progenitor cell fractions in tumors. Transl Oncol 2021; 15:101257. [PMID: 34715620 PMCID: PMC8564672 DOI: 10.1016/j.tranon.2021.101257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Development of a novel antibody (termed as mAb150) developed in our lab which targets annexin A2. Although there are earlier reports of another monoclonal antibody with the same target, the epitope recognized by mAb150 is novel. mAb150 is specifically recognized to target the achilles heel of cancer viz. cancer stem cells and progenitors that persist after treatments and potentially give rise to minimal residual disease.
The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Rajkumar S Kalra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Gaurav S Soman
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Pradeep B Parab
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Avinash M Mali
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Sagar S Varankar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Wellcome-MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge, CB2 0AW
| | - Rutika R Naik
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Swapnil C Kamble
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Jaspreet K Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
7
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
8
|
Chedere A, Hari K, Kumar S, Rangarajan A, Jolly MK. Multi-Stability and Consequent Phenotypic Plasticity in AMPK-Akt Double Negative Feedback Loop in Cancer Cells. J Clin Med 2021; 10:jcm10030472. [PMID: 33530625 PMCID: PMC7865639 DOI: 10.3390/jcm10030472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Adaptation and survival of cancer cells to various stress and growth factor conditions is crucial for successful metastasis. A double-negative feedback loop between two serine/threonine kinases AMPK (AMP-activated protein kinase) and Akt can regulate the adaptation of breast cancer cells to matrix-deprivation stress. This feedback loop can significantly generate two phenotypes or cell states: matrix detachment-triggered pAMPKhigh/ pAktlow state, and matrix (re)attachment-triggered pAkthigh/ pAMPKlow state. However, whether these two cell states can exhibit phenotypic plasticity and heterogeneity in a given cell population, i.e., whether they can co-exist and undergo spontaneous switching to generate the other subpopulation, remains unclear. Here, we develop a mechanism-based mathematical model that captures the set of experimentally reported interactions among AMPK and Akt. Our simulations suggest that the AMPK-Akt feedback loop can give rise to two co-existing phenotypes (pAkthigh/ pAMPKlow and pAMPKhigh/pAktlow) in specific parameter regimes. Next, to test the model predictions, we segregated these two subpopulations in MDA-MB-231 cells and observed that each of them was capable of switching to another in adherent conditions. Finally, the predicted trends are supported by clinical data analysis of The Cancer Genome Atlas (TCGA) breast cancer and pan-cancer cohorts that revealed negatively correlated pAMPK and pAkt protein levels. Overall, our integrated computational-experimental approach unravels that AMPK-Akt feedback loop can generate multi-stability and drive phenotypic switching and heterogeneity in a cancer cell population.
Collapse
Affiliation(s)
- Adithya Chedere
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Saurav Kumar
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| |
Collapse
|
9
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Jiang L, Griffin CH, Wu R. SEGN: Inferring real-time gene networks mediating phenotypic plasticity. Comput Struct Biotechnol J 2020; 18:2510-2521. [PMID: 33005313 PMCID: PMC7516210 DOI: 10.1016/j.csbj.2020.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in intricate but organized networks. Characterizing the spatiotemporal change of such gene networks can offer insight into the genomic signatures underlying organismic adaptation, but it represents a major methodological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that can autonomously detect, track, and visualize environment-induced gene networks along the time axis. The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks, encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks, and monitoring the process of how networks topologically alter across environmental and developmental cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions. SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the trees' response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret gene interdependence, predict how transcriptional co-regulation responds to various regimes, and provides a hint for exploring the mass, energetic, or signal basis that drives various types of gene interactions.
Collapse
Affiliation(s)
- Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Christopher H. Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Balduit A, Agostinis C, Mangogna A, Maggi V, Zito G, Romano F, Romano A, Ceccherini R, Grassi G, Bonin S, Bonazza D, Zanconati F, Ricci G, Bulla R. The Extracellular Matrix Influences Ovarian Carcinoma Cells' Sensitivity to Cisplatinum: A First Step towards Personalized Medicine. Cancers (Basel) 2020; 12:cancers12051175. [PMID: 32392708 PMCID: PMC7281165 DOI: 10.3390/cancers12051175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
The development of personalized therapies for ovarian carcinoma patients is still hampered by several limitations, mainly the difficulty of predicting patients’ responses to chemotherapy in tumor cells isolated from peritoneal fluids. The main reason for the low predictive power of in vitro assays is related to the modification of the cancer cells’ phenotype induced by the culture conditions, which results in changes to the activation state and drug sensitivity of tumor cells compared to their in vivo properties. We have defined the optimal culture conditions to set up a prognostic test to predict high-grade serous ovarian carcinoma (HGSOC) patients’ responses to platinum chemotherapy. We evaluated the effects of hyaluronic acid (HA) and fibronectin matrices and the contribution of freezing/thawing processes to the cell response to platinum-based treatment, collecting spheroids from the ascitic fluids of 13 patients with stage II or III HGSOC. Our findings indicated that an efficient model used to generate predictive data for in vivo sensitivity to platinum is culturing fresh spheroids on HA, avoiding the use of previously frozen primary tumor cells. The establishment of this easy, reproducible and standardized testing method can significantly contribute to an improvement in therapeutic effectiveness, thus bringing the prospect of personalized therapy closer for ovarian carcinoma patients.
Collapse
Affiliation(s)
- Andrea Balduit
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Correspondence: ; Tel.: +39-04-0558-8646
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Veronica Maggi
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Andrea Romano
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Rita Ceccherini
- Centro Sociale Oncologico, OSARF, Azienda Sanitaria Universitaria Giuliano Isontina, 34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Serena Bonin
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| |
Collapse
|
13
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 PMCID: PMC7100584 DOI: 10.3389/fbioe.2020.00220] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
14
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 DOI: 10.3389/fbioe.2020.00220/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
15
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
16
|
Abstract
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in 'pure' epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Department of Development and Cell Biology, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
17
|
Jia D, George JT, Tripathi SC, Kundnani DL, Lu M, Hanash SM, Onuchic JN, Jolly MK, Levine H. Testing the gene expression classification of the EMT spectrum. Phys Biol 2019; 16:025002. [PMID: 30557866 PMCID: PMC7179477 DOI: 10.1088/1478-3975/aaf8d4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, United States of America
- These authors contributed equally
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, United States of America
- These authors contributed equally
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Deepali L Kundnani
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mingyang Lu
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Current address: Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 440003, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Chemistry, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
- Department of Biosciences, Rice University, Houston, TX 77005, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|