1
|
Petitfils C, Depommier C, Delzenne NM, Everard A, Van Hul M, Cani PD. Fecal Dysosmobacter spp. concentration is linked to plasma lipidome in insulin-resistant individuals with overweight, obesity and metabolic syndrome. Lipids Health Dis 2025; 24:203. [PMID: 40481506 PMCID: PMC12142885 DOI: 10.1186/s12944-025-02629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Obesity is reaching epidemic proportions worldwide. This excessive increase of adipose tissue is a risk factor for the development of multiple diseases and premature death. Amongst associated diseases, metabolic syndrome is one of the main comorbidities of obesity. In this context, the gut microbiota has been recognized as both shaping and responding to host energy metabolism. Recently metabolomics has emerged as a powerful tool to capture a snapshot of the metabolites present in a specific tissue, providing new insights into host-microbiota interactions. Integrating metabolomics with gut microbiota studies could help us better understand how specific species impact on host metabolomic profile. Dysosmobacter welbionis has been identified as a promising next generation beneficial bacteria with potential effects on fat mass and glucose metabolism in mice, and fecal Dysosmobacter spp. concentration was inversely correlated to body mass index fasting glucose and plasmatic HbA1c in humans. METHODS Concentration of Dysosmobacter spp. was quantified by qPCR in the stools of insulin resistant overweight/obese participants with a metabolic syndrome and plasma metabolites were analyzed using untargeted metabolomics. Correlations between Dysosmobacter spp. fecal abundance and the 1169 identified plasma metabolites were uncovered using Spearman correlations followed by a false discovery rate correction. RESULTS Interestingly, among the detected metabolites, Dysosmobacter spp. was exclusively associated with lipid molecules. Fecal concentration of Dysosmobacter spp. was positively associated with plasmatic levels of five phosphatidylcholines, arachidonate, two monoacylglycerols, twelve diacylglycerols, three lysophosphatidylethanolamines, one phosphatidylinositol and three lysophosphatidylinositols, as well as glycerophosphoethanolamines, glycerophosphatidylcholine and PC(P-16:0). The correlation was particularly interesting with acylcholine and lysophosphatidylcholine metabolites as, respectively, 6/8 and 8/10 detected molecules were positively associated with Dysosmobacter spp. CONCLUSION These results suggest that Dysosmobacter spp. plays a specific role in host lipid metabolism. This finding aligns with previous in vivo studies highlighting lipid profile alterations in multiple tissues of mice treated with this bacterium. Further studies are needed to elucidate the underlying mechanisms and assess its potential therapeutic applications.
Collapse
Affiliation(s)
- Camille Petitfils
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
2
|
Das PP, Gul MZ, Weber AM, Srivastava RK, Marathi B, Ryan EP, Ghazi IA. Rice Bran Extraction and Stabilization Methods for Nutrient and Phytochemical Biofortification, Nutraceutical Development, and Dietary Supplementation. Nutr Rev 2025; 83:692-712. [PMID: 39657228 PMCID: PMC11894254 DOI: 10.1093/nutrit/nuae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rice is a global staple food crop for nearly half of the world's population. Rice bran along with the germ are essential components of whole-grain rice and have immense potential for enhancing human nutrition. Rice bran has a unique composition and distinct requirements for processing before it can be consumed by humans when compared with other cereal brans. The comprehensive overview and synthesis of rice bran processing include extending the shelf life for functional food product development and extraction of bioactive components. This narrative review highlights established and innovative stabilization approaches, including solvent extraction and enzymatic treatments, which are critical methods and technologies for wider rice bran availability. The nutrient and phytochemical profiles of rice bran may improve with new cultivar development and food-fortification strategies. The postharvest agricultural practices and processing techniques can reduce food waste while also supporting growers to produce novel pigmented cultivars that can enhance nutritional value for human health.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Mir Zahoor Gul
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, United States
| | - Rakesh K Srivastava
- Genomics, Pre-breeding, and Bioinformatics (GPB), Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Balram Marathi
- Department of Genetics and Plant Breeding, Agricultural College, Warangal, Telangana 506007, India
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University and Colorado School of Public Health, Fort Collins, CO 80523, United States
| | - Irfan A Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
3
|
Torres Á, Quintanilla F, Barnafi E, Sánchez C, Acevedo F, Walbaum B, Merino T. Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines. Nutrients 2024; 16:2897. [PMID: 39275213 PMCID: PMC11396961 DOI: 10.3390/nu16172897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Cancer, the second leading cause of death worldwide, demands the identification of modifiable risk factors to optimize its prevention. Diet has emerged as a pivotal focus in current research efforts. This literature review aims to enhance the ACS guidelines on diet and cancer by integrating the latest findings and addressing unresolved questions. The methodology involved an advanced PubMed search with specific filters relevant to the research topic. Topics covered include time-restricted diet, diet quality, acid load, counseling, exercise and diet combination, Mediterranean diet, vegetarian and pescetarian diets, weight loss, dairy consumption, coffee and tea, iron, carbohydrates, meat, fruits and vegetables, heavy metals, micronutrients, and phytoestrogens. The review highlights the benefits of the Mediterranean diet in reducing cancer risk. Adherence to overnight fasting or carbohydrate consumption may contribute to cancer prevention, but excessive fasting may harm patients' quality of life. A vegetarian/pescetarian diet is associated with lower risks of general and colorectal cancer compared to a carnivorous diet. High heme and total iron intake are linked to increased lung cancer risk, while phytoestrogen intake is associated with reduced risk. Coffee and tea have a neutral impact on cancer risk. Finally, the roles of several preventive micronutrients and carcinogenic heavy metals are discussed.
Collapse
Affiliation(s)
- Álvaro Torres
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Francisca Quintanilla
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Esteban Barnafi
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - César Sánchez
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Francisco Acevedo
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Benjamín Walbaum
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Tomás Merino
- Cancer Center UC, Red de Salud Christus-UC, Santiago 8330032, Chile
| |
Collapse
|
4
|
Shennon I, Wilson BC, Behling AH, Portlock T, Haque R, Forrester T, Nelson CA, O'Sullivan JM. The infant gut microbiome and cognitive development in malnutrition. Clin Nutr 2024; 43:1181-1189. [PMID: 38608404 DOI: 10.1016/j.clnu.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Malnutrition affects 195 million children under the age of five worldwide with long term effects that include impaired cognitive development. Brain development occurs rapidly over the first 36 months of life. Whilst seemingly independent, changes to the brain and gut microbiome are linked by metabolites, hormones, and neurotransmitters as part of the gut-brain axis. In the context of severe malnutrition, the composition of the gut microbiome and the repertoire of biochemicals exchanged via the gut-brain axis vary when compared to healthy individuals. These effects are primarily due to the recognized interacting determinants, macro- and micronutrient deficiencies, infection, infestations and toxins related to poor sanitation, and a dearth of psycho-social stimulation. The standard of care for the treatment of severe acute malnutrition is focused on nutritional repletion and weight restoration through the provision of macro- and micronutrients, the latter usually in excess of recommended dietary allowances (RDA). However, existing formulations and supplements have not been designed to specifically address key recovery requirements for brain and gut microbiome development. Animal model studies indicate that treatments targeting the gut microbiome could improve brain development. Despite this, research on humans targeting the gut microbiome with the aim of restoring brain functionality are scarce. We conclude that there is a need for assessment of cognition and the use of various tools that permit visualization of the brain anatomy and function (e.g., Magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), electroencephalogram (EEG)) to understand how interventions targeting the gut microbiome impact brain development.
Collapse
Affiliation(s)
- Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Anna H Behling
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Rashidul Haque
- Infectious Disease Division, International Centre for Diarrheal Disease Research, Bangladesh
| | - Terrence Forrester
- UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Charles A Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Graduate School of Education, Cambridge, MA, USA
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland 1010, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, University Road, Southampton SO17 1BJ, UK; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| |
Collapse
|
5
|
Pfluger BA, Giunta A, Calvimontes DM, Lamb MM, Delgado-Zapata R, Ramakrishnan U, Ryan EP. Pilot Study of Heat-Stabilized Rice Bran Acceptability in Households of Rural Southwest Guatemala and Estimates of Fiber, Protein, and Micro-Nutrient Intakes among Mothers and Children. Nutrients 2024; 16:460. [PMID: 38337744 PMCID: PMC10856929 DOI: 10.3390/nu16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nutrient-dense, acceptable foods are needed in low-resource settings. Rice bran, a global staple byproduct of white rice processing, is rich in amino acids, fibers, and vitamins, when compared to other cereal brans. This pilot study examines the nutritional contribution of rice bran to the daily diets of mother-child pairs in rural southwest Guatemala. Thirty households were screened. Mothers (≥18 years) and children (6 to 24 months) completed 24 h dietary recalls at baseline and after 12 weeks (endline) for diet intake and diversity analyses. During biweekly visits for 12 weeks, households with <5 members received 14 packets containing 60 g of heat-stabilized rice bran, and those with ≥5 members received 28 packets. The macro- and micro-nutrient contributions of rice bran and whole, cooked black beans were included in dietary simulation models with average intakes established between the recalls and for comparison with dietary reference intakes (DRIs). A baseline child food frequency questionnaire was administered. The 27 mothers and 23 children with complete recalls were included in analyses. Daily maternal consumption of 10 g/d of rice bran plus 100 g/d of black beans resulted in all achieving at least 50% of the fiber, protein, magnesium, niacin, potassium, and thiamin DRIs. Daily child consumption of 3 g/d of rice bran plus 10 g/d of black beans resulted in all achieving at least 50% of the magnesium, niacin, phosphorous, and thiamine DRIs. For 15/17 food categories, male children had a higher intake frequency, notably for animal-source foods and coffee. Dietary rice bran coupled with black beans could improve nutritional adequacy, especially for fiber and key micro-nutrients, with broader implications for addressing maternal and child malnutrition in low-resource settings.
Collapse
Affiliation(s)
- Brigitte A. Pfluger
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
| | - Alexis Giunta
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Diva M. Calvimontes
- Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque 09020, Quetzaltenango, Guatemala;
- Departament of Pediatrics, Center for Global Health, University of Colorado, Aurora, CO 80045, USA
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
| | - Molly M. Lamb
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Roberto Delgado-Zapata
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Community & Behavioral Health, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Weber AM, Barbazza S, Fauzi MD, Rachmadewi A, Zuhrina R, Putri FK, Campos Ponce M, Hoeven MVD, Rimbawan R, Nasution Z, Giriwono PE, Wieringa FT, Soekarjo DD, Ryan EP. Solutions to Enhance Health with Alternative Treatments (SEHAT) protocol: a double-blinded randomised controlled trial for gut microbiota-targeted treatment of severe acute malnutrition using rice bran in ready-to-use therapeutic foods in Indonesia. BMJ Open 2023; 13:e076805. [PMID: 38000818 PMCID: PMC10680013 DOI: 10.1136/bmjopen-2023-076805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Current formulations of ready-to-use therapeutic foods (RUTFs) to treat severe acute malnutrition (SAM) in children focus on nutrient density and quantity. Less attention is given to foods targeting gut microbiota metabolism and mucosal barrier functions. Heat-stabilised rice bran contains essential nutrients, prebiotics, vitamins and unique phytochemicals that have demonstrated favourable bioactivity to modulate gut microbiota composition and mucosal immunity. This study seeks to examine the impact of RUTF with rice bran on the microbiota during SAM treatment, recovery and post-treatment growth outcomes in Jember, Indonesia. Findings are expected to provide insights into rice bran as a novel food ingredient to improve SAM treatment outcomes. METHODS AND ANALYSIS A total of 200 children aged 6-59 months with uncomplicated SAM (weight-for-height z-scores (WHZ) <-3, or mid-upper arm circumference (MUAC) <115 mm or having bilateral pitting oedema +/++) or approaching SAM (WHZ<-2.5) will be enrolled in a double-blinded, randomised controlled trial. Children in the active control arm will receive a locally produced RUTF; those in the intervention arm will receive the local RUTF with 5% rice bran. Children will receive daily RUTF treatment for 8 weeks and be monitored for 8 weeks of follow-up. Primary outcomes include the effectiveness of RUTF as measured by changes in weight, WHO growth z-scores, MUAC and morbidity. Secondary outcomes include modulation of the gut microbiome and dried blood spot metabolome, the percentage of children recovered at weeks 8 and 12, and malnutrition relapse at week 16. An intention-to-treat analysis will be conducted for each outcome. ETHICS AND DISSEMINATION The findings of this trial will be submitted to peer-reviewed journals and will be presented at relevant conferences. Ethics approval obtained from the Medical and Health Research Ethical Committee at the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Madain Yogyakarta Ref. No.: KE/FK/0546/EC/2022 and KE/FK/0703/EC/2023 and from Colorado State University IRB#1823, OHRP FWA00000647. TRIAL REGISTRATION NUMBER NCT05319717.
Collapse
Affiliation(s)
- Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Silvia Barbazza
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Moretta D Fauzi
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institut de Recherche pour le Développement (IRD), Montpellier, France
- Mohammad Hoesin Hospital, Palembang, Indonesia
| | | | | | | | - Maiza Campos Ponce
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rimbawan Rimbawan
- South East Asia Food and Agriculture Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, Indonesia
- Department of Community Nutrition, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| | - Zuraidah Nasution
- South East Asia Food and Agriculture Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, Indonesia
- Department of Community Nutrition, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| | - Puspo E Giriwono
- South East Asia Food and Agriculture Science and Technology (SEAFAST) Center, Bogor Agricultural University, Bogor, Indonesia
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| | - Frank T Wieringa
- Institut de Recherche pour le Développement (IRD), Montpellier, France
- UMR Qualisud, University of Montpellier, Institut Agro, CIRAD, IRD, Avignon University and University of Reunion, Montpellier, France
| | | | - Elizabeth P Ryan
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
9
|
Non-Targeted Dried Blood Spot-Based Metabolomics Analysis Showed Rice Bran Supplementation Effects Multiple Metabolic Pathways during Infant Weaning and Growth in Mali. Nutrients 2022; 14:nu14030609. [PMID: 35276967 PMCID: PMC8840250 DOI: 10.3390/nu14030609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Rice bran contains essential nutrients, antioxidants, and bioactives with anti-inflammatory and diarrheal protective properties important for infants. This 6-month randomized controlled trial investigated the effects of heat-stabilized rice bran supplementation during Malian infant weaning. Fifty healthy 6-month-old infants were randomized to a rice bran intervention (N = 25) or non-intervention control group (N = 25). Intervention infants received dose-escalating rice bran supplementation for 6 months (1–5 g/day). Monthly infant dried blood spot and anthropometric measurements were collected. Dried blood spot metabolite abundances were compared monthly according to diet for six months. Supplementation resulted in favorable weight-for-age and weight-for-length z-score changes. Non-targeted dried blood spot-based metabolomics identified 796 metabolites, of which 33% had significant fold differences between groups (7–12 months). Lipids and amino acids represented 70.6% of the metabolites identified. Rice bran supplementation during infant weaning significantly modulated the metabolites involved in antioxidant defenses and with neuroactive properties including reduced glutathione, glycine, glutamate, cysteinylglycine, tryptophan betaine, and choline. These findings support rice bran as a weaning ingredient to meet infant nutritional requirements and with the potential to reduce oxidative stress and improve cognitive outcomes. This study provides evidence for dried blood spots as a cost-effective tool to detect infant biomarkers of nutritional and metabolic status.
Collapse
|
10
|
Weber AM, Baxter BA, McClung A, Lamb MM, Becker-Dreps S, Vilchez S, Koita O, Wieringa F, Ryan EP. Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117962. [PMID: 34418860 PMCID: PMC8556161 DOI: 10.1016/j.envpol.2021.117962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg-1) and lowest in Guatemala (0.017 mg kg-1) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Collapse
Affiliation(s)
- Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| | - Molly M Lamb
- Department of Epidemiology and Center for Global Health, University of Colorado School of Public Health, Aurora, CO 80045, USA
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7595, USA
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Frank Wieringa
- Alimentation, Nutrition, Santé (E6), UMR95 QualiSud, University of Montpellier, Avignon Université, CIRAD, Institut Agro, Institut de Recherche pour le Développement (IRD), Université de La Reunion, Montpellier, France
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|