1
|
Meng Z, Huang Y, Wang W, Zhou L, Zhou K. Orienting role of the putative human posterior infero-temporal area in visual attention. Cortex 2024; 175:54-65. [PMID: 38704919 DOI: 10.1016/j.cortex.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.
Collapse
Affiliation(s)
- Zong Meng
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yingjie Huang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Wenbo Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Ling W, Yang F, Huang T, Li X. Self-esteem mediates the relationship between the parahippocampal gyrus and decisional procrastination at resting state. Front Neurosci 2024; 18:1341142. [PMID: 38567283 PMCID: PMC10986735 DOI: 10.3389/fnins.2024.1341142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
When faced with a conflict or dilemma, we tend to postpone or even avoid making a decision. This phenomenon is known as decisional procrastination. Here, we investigated the neural correlates of this phenomenon, in particular the parahippocampal gyrus (PHG) that has previously been identified in procrastination studies. In this study, we applied an individual difference approach to evaluate participants' spontaneous neural activity in the PHG and their decisional procrastination levels, assessed outside the fMRI scanner. We discovered that the fractional amplitude of low-frequency fluctuations (fALFF) in the caudal PHG (cPHG) could predict participants' level of decisional procrastination, as measured by the avoidant decision-making style. Importantly, participants' self-esteem mediated the relationship between the cPHG and decisional procrastination, suggesting that individuals with higher levels of spontaneous activity in the cPHG are likely to have higher levels of self-esteem and thus be more likely to make decisions on time. In short, our study broadens the PHG's known role in procrastination by demonstrating its link with decisional procrastination and the mediating influence of self-esteem, underscoring the need for further exploration of this mediation mechanism.
Collapse
Affiliation(s)
- Weili Ling
- Department of Psychology, Renmin University of China, Beijing, China
| | - Fan Yang
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Taicheng Huang
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Xueting Li
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
3
|
Yao Y, Diao D. Impact of inhibition level on field-dependent and field-independent individuals in attentional blink. PSYCHOLOGICAL RESEARCH 2024; 88:91-100. [PMID: 37407850 DOI: 10.1007/s00426-023-01853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
The attentional blink (AB) phenomenon is a cognitive limitation that refers to the failure in identifying the second target if it follows the first one in close temporal proximity (200-500 ms). However, more recent studies have demonstrated that AB task performance greatly differs among individuals. This behavioral heterogeneity in AB has promoted research on exploring the predictive value of individual differences. The present study examined how AB magnitudes were related to personal cognitive styles. The Embedded Figures Test was carried out to classify participants' cognitive styles, along with the manipulation of the physical characteristics of distractors in the rapid serial visual presentation paradigm (RSVP) as two levels of inhibition (target-distractor similarity). Results from two experiments of varying difficulty revealed that the AB effect varied between field-dependent (FD) and field-independent (FI) individuals. The AB magnitude in FD individuals was more easily influenced by different inhibition levels of distractors, compared to the FI individuals. Results are interpreted in terms of the contemporary theories of AB that highlighted the inhibitory control over attention.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China.
| | - Danmei Diao
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
4
|
Guan Y, Ma H, Liu J, Xu L, Zhang Y, Tian L. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Brain Imaging Behav 2023; 17:628-638. [PMID: 37553449 DOI: 10.1007/s11682-023-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.
Collapse
Affiliation(s)
- Yun Guan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China
| | - Hao Ma
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangcong Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Le Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yang Zhang
- Department of Orthopedics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
5
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
6
|
It's time for attentional control: Temporal expectation in the attentional blink. Conscious Cogn 2023; 107:103461. [PMID: 36584439 DOI: 10.1016/j.concog.2022.103461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The attentional blink (AB) reveals a limitation in conscious processing of sequential targets. Although it is widely held that the AB derives from a structural bottleneck of central capacity, how the central processing is constrained is still unclear. As the AB reflects the dilemma of deploying attentional resources in the time dimension, research on temporal allocation provides an important avenue for understanding the mechanism. Here we reviewed studies regarding the role of temporal expectation in modulating the AB performance primarily based on two temporal processing strategies: interval-based and rhythm-based timings. We showed that both temporal expectations can help to organize limited resources among multiple attentional episodes, thereby mitigating the AB effect. As it turns out, scrutinizing on the AB from a temporal perspective is a promising way to comprehend the mechanisms behind the AB and conscious cognition. We also highlighted some unresolved issues and discussed potential directions for future research.
Collapse
|
7
|
A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control. J Neurosci 2021; 41:3854-3869. [PMID: 33687963 DOI: 10.1523/jneurosci.2771-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
The integral capacity of human language together with semantic memory drives the linkage of words and their meaning, which theoretically is subject to cognitive control. However, it remains unknown whether, across different language modalities and input/output formats, there is a shared system in the human brain for word-meaning binding and how this system interacts with cognitive control. Here, we conducted a functional magnetic resonance imaging experiment based on a large cohort of subjects (50 females, 50 males) to comprehensively measure the brain responses evoked by semantic processing in spoken and written word comprehension and production tasks (listening, speaking, reading, and writing). We found that heteromodal word input and output tasks involved distributed brain regions within a frontal-parietal-temporal network and focally coactivated the anterior lateral visual word form area (VWFA), which is located in the basal occipitotemporal area. Directed connectivity analysis revealed that the VWFA was invariably under significant top-down modulation of the frontoparietal control network and interacts with regions related to attention and semantic representation. This study reveals that the VWFA is a key site subserving general semantic processes linking words and meaning, challenging the predominant emphasis on this area's specific role in reading or more general visual processes. Our findings also suggest that the dynamics between semantic memory and cognitive control mechanisms during word processing are largely independent of the modalities of input or output.SIGNIFICANCE STATEMENT Binding words and their meaning into a coherent whole during retrieval requires accessing semantic memory and cognitive control, allowing our thoughts to be expressed and comprehended through mind-external tokens in multiple modalities, such as written or spoken forms. However, it is still unknown whether multimodal language comprehension and production share a common word-meaning binding system in human brains and how this system is connected to a cognitive control mechanism. By systematically measuring brain activity evoked by spoken and written verbal input and output tasks tagging word-meaning binding processes, we demonstrate a general word-meaning binding site within the visual word form area (VWFA) and how this site is modulated by the frontal-parietal control network.
Collapse
|