1
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2024; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
2
|
Xie H, Illapani VSP, Reppert LT, You X, Krishnamurthy M, Bai Y, Berl MM, Gaillard WD, Hong SJ, Sepeta LN. Longitudinal hippocampal axis in large-scale cortical systems underlying development and episodic memory. Proc Natl Acad Sci U S A 2024; 121:e2403015121. [PMID: 39436664 PMCID: PMC11536083 DOI: 10.1073/pnas.2403015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.
Collapse
Affiliation(s)
- Hua Xie
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Lauren T. Reppert
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Xiaozhen You
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Yutong Bai
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Madison M. Berl
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - William D. Gaillard
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| |
Collapse
|
3
|
Chen EYH, Wong SMY, Tang EYH, Lei LKS, Suen YN, Hui CLM. Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders. Brain Sci 2023; 13:1069. [PMID: 37509001 PMCID: PMC10376952 DOI: 10.3390/brainsci13071069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Psychotic disorders are complex disorders with multiple etiologies. While increased dopamine synthesis capacity has been proposed to underlie psychotic episodes, dopamine-independent processes are also involved (less responsive to dopamine receptor-blocking medications). The underlying mechanism(s) of the reduction in antipsychotic responsiveness over time, especially after repeated relapses, remain unclear. Despite the consistent evidence of dopamine overactivity and hippocampal volume loss in schizophrenia, few accounts have been provided based on the interactive effect of dopamine on hippocampal synapse plasticity mediating autobiographical memory processes. The present hypothesis builds upon previous works showing the potential effects of dopamine overactivity on hippocampal-mediated neuroplasticity underlying autobiographical memory, alongside known patterns of autobiographical memory dysfunction in psychosis. We propose that spurious autobiographical memory of psychosis (SAMP) produced during active psychosis may be a key mechanism mediating relapses and treatment non-responsiveness. In a hyperdopaminergic state, SAMP is expected to be generated at an increased rate during active psychosis. Similar to other memories, it will undergo assimilation, accommodation, and extinction processes. However, if SAMP fails to integrate with existing memory, a discontinuity in autobiographical memory may result. Inadequate exposure to normalizing experiences and hyposalience due to overmedication or negative symptoms may also impede the resolution of SAMP. Residual SAMP is hypothesized to increase the propensity for relapse and treatment non-responsiveness. Based on recent findings on the role of dopamine in facilitating hippocampal synapse plasticity and autobiographical memory formation, the SAMP hypothesis is consistent with clinical observations of DUP effects, including the repetition of contents in psychotic relapses as well as the emergence of treatment non-responsiveness after repeated relapses. Clinical implications of the hypothesis highlight the importance of minimizing active psychosis, integrating psychosis memory, avoiding over-medication, and fostering normalizing experiences.
Collapse
Affiliation(s)
- Eric Y H Chen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Stephanie M Y Wong
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Y H Tang
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lauren K S Lei
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Nam Suen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy L M Hui
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li SC. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. Neuroimage 2023; 273:120099. [PMID: 37037380 DOI: 10.1016/j.neuroimage.2023.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Franka Glöckner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course (LIFE), Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, German
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Subramaniapillai S, Rajagopal S, Ankudowich E, Pasvanis S, Misic B, Rajah MN. Age- and Episodic Memory-related Differences in Task-based Functional Connectivity in Women and Men. J Cogn Neurosci 2022; 34:1500-1520. [PMID: 35579987 DOI: 10.1162/jocn_a_01868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aging is associated with episodic memory decline and changes in functional brain connectivity. Understanding whether and how biological sex influences age- and memory performance-related functional connectivity has important theoretical implications for the cognitive neuroscience of memory and aging. Here, we scanned 161 healthy adults between 19 and 76 years of age in an event-related fMRI study of face-location spatial context memory. Adults were scanned while performing easy and difficult versions of the task at both encoding and retrieval. We used multivariate whole-brain partial least squares connectivity to test the hypothesis that there are sex differences in age- and episodic memory performance-related functional connectivity. We examined how individual differences in age and retrieval accuracy correlated with task-related connectivity. We then repeated this analysis after disaggregating the data by self-reported sex. We found that increased encoding and retrieval-related connectivity within the dorsal attention network (DAN), and between DAN and frontoparietal network and visual networks, were positively correlated to retrieval accuracy and negatively correlated with age in both sexes. We also observed sex differences in age- and performance-related functional connectivity: (a) Greater between-networks integration was apparent at both levels of task difficulty in women only, and (b) increased DAN-default mode network connectivity with age was observed in men and was correlated with poorer memory performance. Therefore, the neural correlates of age-related episodic memory decline differ in women and men and have important theoretical and clinical implications for the cognitive neuroscience of memory, aging, and dementia prevention.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Elizabeth Ankudowich
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Bratislav Misic
- Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | - M Natasha Rajah
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| |
Collapse
|
6
|
Giacobbo BL, Özalay Ö, Mediavilla T, Ericsson M, Axelsson J, Rieckmann A, Sultan F, Marcellino D. The Aged Striatum: Evidence of Molecular and Structural Changes Using a Longitudinal Multimodal Approach in Mice. Front Aging Neurosci 2022; 14:795132. [PMID: 35140600 PMCID: PMC8818755 DOI: 10.3389/fnagi.2022.795132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
To study the aging human brain requires significant resources and time. Thus, mice models of aging can provide insight into changes in brain biological functions at a fraction of the time when compared to humans. This study aims to explore changes in dopamine D1 and D2 receptor availability and of gray matter density in striatum during aging in mice and to evaluate whether longitudinal imaging in mice may serve as a model for normal brain aging to complement cross-sectional research in humans. Mice underwent repeated structural magnetic resonance imaging (sMRI), and [11C]Raclopride and [11C]SCH23390 positron emission tomography (PET) was performed on a subset of aging mice. PET and sMRI data were analyzed by binding potential (BPND), voxel- and tensor-based morphometry (VBM and TBM, respectively). Longitudinal PET revealed a significant reduction in striatal BPND for D2 receptors over time, whereas no significant change was found for D1 receptors. sMRI indicated a significant increase in modulated gray matter density (mGMD) over time in striatum, with limited clusters showing decreased mGMD. Mouse [11C]Raclopride data is compatible with previous reports in human cross-sectional studies, suggesting that a natural loss of dopaminergic D2 receptors in striatum can be assessed in mice, reflecting estimates from humans. No changes in D1 were found, which may be attributed to altered [11C]SCH23390 kinetics in anesthetized mice, suggesting that this tracer is not yet able to replicate human findings. sMRI revealed a significant increase in mGMD. Although contrary to expectations, this increase in modulated GM density may be attributed to an age-related increase in non-neuronal cells.
Collapse
Affiliation(s)
| | - Özgün Özalay
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fahad Sultan
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Daniel Marcellino
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Marcellino,
| |
Collapse
|
7
|
Panitz DY, Berkovich-Ohana A, Mendelsohn A. Age-related functional connectivity along the hippocampal longitudinal axis. Hippocampus 2021; 31:1115-1127. [PMID: 34319631 DOI: 10.1002/hipo.23377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023]
Abstract
Accumulated evidence points toward a long-axis functional division of the hippocampus, with its anterior part primarily associated with emotional processes and the posterior with navigation and cognition. It is yet unclear, however, how functional connectivity between areas along the hippocampal longitudinal axis and other brain regions differ, and how they are affected by age. Applying an anatomically driven general linear model-based functional connectivity analysis on a large database of resting-state fMRI data, we demonstrate that independent of age, the posterior hippocampus is functionally connected primarily with sensory and motor areas, the middle hippocampus with the default mode network, and the anterior with limbic and prefrontal regions. Along with an age-related disintegration of intra-hippocampal BOLD signal uniformity, the middle and posterior sub-regions exhibit mostly decreases in their functional connectivity with cortical regions, whereas the anterior hippocampus and ventral striatum appear to become more synchronized with age. These findings indicate that long-axis hippocampal areas are tuned to particular functional networks, which do not age in a unified manner.
Collapse
Affiliation(s)
- Daniel Yochai Panitz
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| | - Aviva Berkovich-Ohana
- Faculty of Education, Department of Learning, Instruction and Teacher Education, and Department of Counseling and Human Development, University of Haifa, Haifa, Israel.,Edmond Safra Brain Research Center, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| |
Collapse
|