1
|
Morin C, Faure F, Mollet J, Guenoun D, Heydari-Olya A, Sautet I, Diao S, Faivre V, Pansiot J, Tabet L, Hua J, Schwendimann L, Mokhtari A, Martin-Rosique R, Chadi S, Laforge M, Demené C, Delahaye-Duriez A, Diaz-Heijtz R, Fleiss B, Matrot B, Auger S, Tanter M, Van Steenwinckel J, Gressens P, Bokobza C. C-section and systemic inflammation synergize to disrupt the neonatal gut microbiota and brain development in a model of prematurity. Brain Behav Immun 2025; 123:824-837. [PMID: 39442636 DOI: 10.1016/j.bbi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Infants born very preterm (below 28 weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1β between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1β on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Obstetrics and Gynecology, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Julie Mollet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - David Guenoun
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Pharmacy, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | | | - Irvin Sautet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Fudan University, Department of Neonatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Julien Pansiot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Lara Tabet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Jennifer Hua
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Amazigh Mokhtari
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Rebeca Martin-Rosique
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mireille Laforge
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Andrée Delahaye-Duriez
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; UFR Santé Médecine et Biologie Humaine, Université Sorbonne Paris Nord, 93000 Bobigny, France; Unité Fonctionnelle de Médecine Génomique et Génétique Clinique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris Seine Saint-Denis, Assistance Publique des Hôpitaux de Paris, 93140 Bondy, France
| | | | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Boris Matrot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sandrine Auger
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France.
| |
Collapse
|
2
|
Chen M, Lin Y, Yu C, Fu R, Shentu H, Yao J, Huang J, He Y, Yu M. Effect of cesarean section on the risk of autism spectrum disorders/attention deficit hyperactivity disorder in offspring: a meta-analysis. Arch Gynecol Obstet 2024; 309:439-455. [PMID: 37219611 DOI: 10.1007/s00404-023-07059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE This study was conducted to investigate the relationship between cesarean section (CS) offspring and autism spectrum disorders (ASD)/attention deficit hyperactivity disorder (ADHD). METHODS Searching of the databases (PubMed, Web of Science, Embase, and Cochrane Library) for studies on the relationship between mode of delivery and ASD/ADHD until August 2022. The primary outcome was the incidence of ASD/ADHD in the offspring. RESULTS This meta-analysis included 35 studies (12 cohort studies and 23 case-control studies). Statistical results showed a higher risk of ASD (odds ratio (OR) = 1.25, P < 0.001) and ADHD (OR = 1.11, P < 0.001) in CS offspring compared to the VD group. Partial subgroup analysis showed no difference in ASD risk between CS and VD offspring in sibling-matched groups (OR = 0.98, P = 0.625). The risk of ASD was higher in females (OR = 1.66, P = 0.003) than in males (OR = 1.17, P = 0.004) in the CS offspring compared with the VD group. There was no difference in the risk of ASD between CS under regional anesthesia group and VD group (OR = 1.07, P = 0.173). However, the risk of ASD was higher in the CS offspring under general anesthesia than in the VD offspring (OR = 1.62, P < 0.001). CS offspring developed autism (OR = 1.38, P = 0.011) and pervasive developmental disorder-not otherwise specified (OR = 1.46, P = 0.004) had a higher risk than VD offspring, but there was no difference in Asperger syndrome (OR = 1.19, P = 0.115). Offspring born via CS had a higher incidence of ADHD in different subgroup analyses (sibling-matched, type of CS, and study design). CONCLUSIONS In this meta-analysis, CS was a risk factor for ASD/ADHD in offspring compared with VD.
Collapse
Affiliation(s)
- Meiling Chen
- The Public Health College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yeting Lin
- Anesthesiology Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haojie Shentu
- The Medical Imaging College, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Yao
- The Public Health College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianing Huang
- The Public Health College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengjiao Yu
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, 998 North Qianhe Road, Yinzhou District, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
3
|
Kenkel WM, Ortiz RJ, Yee JR, Perkeybile AM, Kulkarni P, Carter CS, Cushing BS, Ferris CF. Neuroanatomical and functional consequences of oxytocin treatment at birth in prairie voles. Psychoneuroendocrinology 2023; 150:106025. [PMID: 36709631 PMCID: PMC10064488 DOI: 10.1016/j.psyneuen.2023.106025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Birth is a critical period for the developing brain, a time when surging hormone levels help prepare the fetal brain for the tremendous physiological changes it must accomplish upon entry into the 'extrauterine world'. A number of obstetrical conditions warrant manipulations of these hormones at the time of birth, but we know little of their possible consequences on the developing brain. One of the most notable birth signaling hormones is oxytocin, which is administered to roughly 50% of laboring women in the United States prior to / during delivery. Previously, we found evidence for behavioral, epigenetic, and neuroendocrine consequences in adult prairie vole offspring following maternal oxytocin treatment immediately prior to birth. Here, we examined the neurodevelopmental consequences in adult prairie vole offspring following maternal oxytocin treatment prior to birth. Control prairie voles and those exposed to 0.25 mg/kg oxytocin were scanned as adults using anatomical and functional MRI, with neuroanatomy and brain function analyzed as voxel-based morphometry and resting state functional connectivity, respectively. Overall, anatomical differences brought on by oxytocin treatment, while widespread, were generally small, while differences in functional connectivity, particularly among oxytocin-exposed males, were larger. Analyses of functional connectivity based in graph theory revealed that oxytocin-exposed males in particular showed markedly increased connectivity throughout the brain and across several parameters, including closeness and degree. These results are interpreted in the context of the organizational effects of oxytocin exposure in early life and these findings add to a growing literature on how the perinatal brain is sensitive to hormonal manipulations at birth.
Collapse
Affiliation(s)
- William M Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA; Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
| | - Richard J Ortiz
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA; Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jason R Yee
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria
| | - Allison M Perkeybile
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Praveen Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Dufour A, Dumon C, Gouty-Colomer LA, Eftekhari S, Ferrari DC, Ben-Ari Y. Prenatal reduction of E14.5 embryonically fate-mapped pyramidal neurons in a mouse model of autism. Eur J Neurosci 2022; 56:3875-3888. [PMID: 35636970 DOI: 10.1111/ejn.15724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Although several observations suggest that the constitutive biological, genetic or physiological changes leading to Autism Spectrum Disorders (ASD) start in utero, their early impact on the number and density of neurons in the brain remains unknown. Using genetic fate mapping associated with the iDISCO clearing method we identified and counted a selective population of neocortical and hippocampal pyramidal neurons in the in utero valproate (VPA) mouse model of autism. We report that one day before birth the number of pyramidal neurons born at E14.5 in the neocortex and hippocampus of VPA-mice is smaller than in age-matched controls. VPA also induced a reduction of the neocortical -but not hippocampal- volume one day before birth. Interestingly, VPA-mice present an increase in both neocortical and hippocampal volumes 2 days after birth compared to controls. These results suggest that the VPA-exposed hippocampus and neocortex differ substantially from controls during the highly complex perinatal period, and specially one day before birth, reflecting the early pathogenesis of ASD.
Collapse
Affiliation(s)
- Amandine Dufour
- Fundamental Research Department, Neurochlore, Marseille, France
| | - Camille Dumon
- Fundamental Research Department, Neurochlore, Marseille, France
| | | | - Sanaz Eftekhari
- Fundamental Research Department, Neurochlore, Marseille, France
| | - Diana C Ferrari
- Fundamental Research Department, Neurochlore, Marseille, France
| | | |
Collapse
|