1
|
Forss S, Ciria A, Clark F, Galusca CL, Harrison D, Lee S. A transdisciplinary view on curiosity beyond linguistic humans: animals, infants, and artificial intelligence. Biol Rev Camb Philos Soc 2024; 99:979-998. [PMID: 38287201 DOI: 10.1111/brv.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Curiosity is a core driver for life-long learning, problem-solving and decision-making. In a broad sense, curiosity is defined as the intrinsically motivated acquisition of novel information. Despite a decades-long history of curiosity research and the earliest human theories arising from studies of laboratory rodents, curiosity has mainly been considered in two camps: 'linguistic human' and 'other'. This is despite psychology being heritable, and there are many continuities in cognitive capacities across the animal kingdom. Boundary-pushing cross-disciplinary debates on curiosity are lacking, and the relative exclusion of pre-linguistic infants and non-human animals has led to a scientific impasse which more broadly impedes the development of artificially intelligent systems modelled on curiosity in natural agents. In this review, we synthesize literature across multiple disciplines that have studied curiosity in non-verbal systems. By highlighting how similar findings have been produced across the separate disciplines of animal behaviour, developmental psychology, neuroscience, and computational cognition, we discuss how this can be used to advance our understanding of curiosity. We propose, for the first time, how features of curiosity could be quantified and therefore studied more operationally across systems: across different species, developmental stages, and natural or artificial agents.
Collapse
Affiliation(s)
- Sofia Forss
- Collegium Helveticum, Institute for Advanced Studies, University of Zurich, ETH Zurich and Zurich University of the Arts, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alejandra Ciria
- School of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fay Clark
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Cristina-Loana Galusca
- Laboratoire de Psychologie et NeuroCognition, CNRS Université Grenoble Alpes, Grenoble, France
| | - David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| | - Saein Lee
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul, Republic of Korea
- Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ellington L, Mercier S, Motes-Rodrigo A, van de Waal E, Forss S. Urbanization does not increase "object curiosity" in vervet monkeys, but semi-urban individuals selectively explore food-related anthropogenic items. Curr Zool 2024; 70:383-393. [PMID: 39035753 PMCID: PMC11255996 DOI: 10.1093/cz/zoae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/23/2024] Open
Abstract
Urban environments expose animals to abundant anthropogenic materials and foods that facilitate foraging innovations in species with opportunistic diets and high behavioral flexibility. Neophilia and exploration tendency are believed to be important behavioral traits for animals thriving in urban environments. Vervet monkeys (Chlorocebus pygerythrus) are one of few primate species that have successfully adapted to urban environments, thus making them an ideal species to study these traits. Using a within-species cross-habitat approach, we compared neophilia and exploration of novel objects (jointly referred to as "object curiosity") between semi-urban, wild, and captive monkeys to shed light on the cognitive traits facilitating urban living. To measure "object curiosity," we exposed monkeys to various types of novel stimuli and compared their approaches and explorative behavior. Our results revealed differences in the number of approaches and explorative behavior toward novel stimuli between the habitat types considered. Captive vervet monkeys were significantly more explorative than both semi- urban and wild troops, suggesting that positive experiences with humans and lack of predation, rather than exposure to human materials per se, influence object curiosity. Across habitats, juvenile males were the most explorative age-sex class. This is likely due to males being the dispersing sex and juveniles being more motivated to learn about their environment. Additionally, we found that items potentially associated with human food, elicited stronger explorative responses in semi-urban monkeys than non-food related objects, suggesting that their motivation to explore might be driven by "anthrophilia", that is, their experience of rewarding foraging on similar anthropogenic food sources. We conclude that varying levels of exposure to humans, predation and pre-exposure to human food packaging explain variation in "object curiosity" in our sample of vervet monkeys.
Collapse
Affiliation(s)
- Lindsey Ellington
- Behavioural & Physiological Ecology, University of Groningen, P.O. Box 11103 9700 CC, Groningen, The Netherlands
| | - Stephanie Mercier
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Alba Motes-Rodrigo
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
| | - Erica van de Waal
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Sofia Forss
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
3
|
Fei Y, Wu Q, Zhao S, Song K, Han J, Liu C. Diverse and asymmetric patterns of single-neuron projectome in regulating interhemispheric connectivity. Nat Commun 2024; 15:3403. [PMID: 38649683 PMCID: PMC11035633 DOI: 10.1038/s41467-024-47762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The corpus callosum, historically considered primarily for homotopic connections, supports many heterotopic connections, indicating complex interhemispheric connectivity. Understanding this complexity is crucial yet challenging due to diverse cell-specific wiring patterns. Here, we utilized public AAV bulk tracing and single-neuron tracing data to delineate the anatomical connection patterns of mouse brains and conducted wide-field calcium imaging to assess functional connectivity across various brain states in male mice. The single-neuron data uncovered complex and dense interconnected patterns, particularly for interhemispheric-heterotopic connections. We proposed a metric "heterogeneity" to quantify the complexity of the connection patterns. Computational modeling of these patterns suggested that the heterogeneity of upstream projections impacted downstream homotopic functional connectivity. Furthermore, higher heterogeneity observed in interhemispheric-heterotopic projections would cause lower strength but higher stability in functional connectivity than their intrahemispheric counterparts. These findings were corroborated by our wide-field functional imaging data, underscoring the important role of heterotopic-projection heterogeneity in interhemispheric communication.
Collapse
Affiliation(s)
- Yao Fei
- School of Automation, Northwestern Polytechnical University, Xi'an, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qihang Wu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Kun Song
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Cirong Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Ivancovsky T, Baror S, Bar M. A shared novelty-seeking basis for creativity and curiosity. Behav Brain Sci 2023; 47:e89. [PMID: 37547934 DOI: 10.1017/s0140525x23002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Curiosity and creativity are central pillars of human growth and invention. Although they have been studied extensively in isolation, the relationship between them has not yet been established. We propose that both curiosity and creativity emanate from the same mechanism of novelty seeking. We first present a synthesis showing that curiosity and creativity are affected similarly by a number of key cognitive faculties such as memory, cognitive control, attention, and reward. We then review empirical evidence from neuroscience research, indicating that the same brain regions are involved in both curiosity and creativity, focusing on the interplay between three major brain networks: the default mode network, the salience network, and the executive control network. After substantiating the link between curiosity and creativity, we propose a novelty-seeking model (NSM) that underlies them and suggests that the manifestation of the NSM is governed by one's state of mind.
Collapse
Affiliation(s)
- Tal Ivancovsky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Catalunya, Spain
| | - Shira Baror
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Moshe Bar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan,
| |
Collapse
|
5
|
Tian X, Chen Y, Majka P, Szczupak D, Perl YS, Yen CCC, Tong C, Feng F, Jiang H, Glen D, Deco G, Rosa MGP, Silva AC, Liang Z, Liu C. An integrated resource for functional and structural connectivity of the marmoset brain. Nat Commun 2022; 13:7416. [PMID: 36456558 PMCID: PMC9715556 DOI: 10.1038/s41467-022-35197-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Comprehensive integration of structural and functional connectivity data is required to model brain functions accurately. While resources for studying the structural connectivity of non-human primate brains already exist, their integration with functional connectivity data has remained unavailable. Here we present a comprehensive resource that integrates the most extensive awake marmoset resting-state fMRI data available to date (39 marmoset monkeys, 710 runs, 12117 mins) with previously published cellular-level neuronal tracing data (52 marmoset monkeys, 143 injections) and multi-resolution diffusion MRI datasets. The combination of these data allowed us to (1) map the fine-detailed functional brain networks and cortical parcellations, (2) develop a deep-learning-based parcellation generator that preserves the topographical organization of functional connectivity and reflects individual variabilities, and (3) investigate the structural basis underlying functional connectivity by computational modeling. This resource will enable modeling structure-function relationships and facilitate future comparative and translational studies of primate brains.
Collapse
Affiliation(s)
- Xiaoguang Tian
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Yuyan Chen
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Piotr Majka
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland ,grid.1002.30000 0004 1936 7857Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Diego Szczupak
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Yonatan Sanz Perl
- grid.5612.00000 0001 2172 2676Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018 Spain ,grid.441741.30000 0001 2325 2241Universidad de San Andrés, Vito Dumas 284 (B1644BID), Buenos Aires, Argentina
| | - Cecil Chern-Chyi Yen
- grid.94365.3d0000 0001 2297 5165Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD 20892 USA
| | - Chuanjun Tong
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Furui Feng
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Haiteng Jiang
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhe Jiang Sheng, China ,grid.13402.340000 0004 1759 700XMOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Daniel Glen
- grid.94365.3d0000 0001 2297 5165Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892 USA
| | - Gustavo Deco
- grid.5612.00000 0001 2172 2676Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018 Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010 Spain ,grid.419524.f0000 0001 0041 5028Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103 Germany ,grid.1002.30000 0004 1936 7857School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800 Australia
| | - Marcello G. P. Rosa
- grid.1002.30000 0004 1936 7857Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Afonso C. Silva
- grid.21925.3d0000 0004 1936 9000Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Zhifeng Liang
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai, Shanghai, China
| | - Cirong Liu
- grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai, Shanghai, China ,Lingang Laboratory, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|