1
|
Futatsubashi G, Sekiguchi H. Neurophysiologic inhibitory factors influencing subsequent ankle sprain in collegiate male athletes: a prospective cohort study. Exp Brain Res 2024; 242:2839-2851. [PMID: 39509037 DOI: 10.1007/s00221-024-06930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
Many athletes with recurrent ankle sprains complain of neurophysiological deficits related to chronic ankle instability (CAI). However, it remains unclear how changes in the corticospinal pathway affect the potential risk of subsequent ankle sprains. The purpose of this study was to investigate whether the corticospinal excitability (input-output properties) and silent period (SP) could be related to the risk of subsequent ankle sprains among athletes. Forty-three male collegiate basketball athletes were enrolled, and 82 ankles were finally sorted into four ankle groups based on symptoms (CAI, sub-CAI, copers, and normal). The neurophysiological data was recorded in both ankles using transcranial magnetic stimulation (TMS) as baseline assessments. Subsequently, we prospectively followed the occurrence of subsequent ankle sprain injuries for 24 months (SG, subsequent ankle sprain group; NSG, non-sprain group). In the baseline assessment, we confirmed that the threshold of the input-output properties in the CAI group was higher than those in the normal group. After the follow-up, 22 ankles sustained subsequent ankle sprains (SGs). We also found that SGs exhibited a significantly longer SP at the middle and high stimulus intensities of TMS compared to NSGs (60 ankles) (middle: p = 0.012, Cohen's d = 0.644, and high: p = 0.020, Cohen's d = 0.590). These findings suggest that a prolonged SP could be a crucial factor affecting subsequent ankle sprains in athletes. To prevent further recurrent sports injuries, neurophysiologic probes, particularly a longer SP, might be a potential assessment tool to return to the field.
Collapse
Affiliation(s)
- Genki Futatsubashi
- Faculty of Health and Sports Sciences, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo, 151-8650, Japan.
- Faculty of Business and Information Sciences, Jobu University, Gunma, Japan.
| | - Hirofumi Sekiguchi
- Faculty of Business and Information Sciences, Jobu University, Gunma, Japan
- Faculty of Education, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
2
|
Cecala AL, Kozak RA, Pruszynski JA, Corneil BD. Done in 65 ms: Express Visuomotor Responses in Upper Limb Muscles in Rhesus Macaques. eNeuro 2023; 10:ENEURO.0078-23.2023. [PMID: 37507227 PMCID: PMC10449271 DOI: 10.1523/eneuro.0078-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
How rapidly can the brain transform vision into action? Work in humans has established that the transformation for visually-guided reaching can be remarkably rapid, with the first phase of upper limb muscle recruitment, the express visuomotor response, beginning within less than 100 ms of visual target presentation. Such short-latency responses limit the opportunities for extensive cortical processing, leading to the hypothesis that they are generated via the subcortical tecto-reticulo-spinal pathway. Here, we examine whether nonhuman primates (NHPs) exhibit express visuomotor responses. Two male macaques made visually-guided reaches in a behavioral paradigm known to elicit express visuomotor responses in humans, while we acquired intramuscular recordings from the deltoid muscle. Across several variants of this paradigm, express visuomotor responses began within 65 ms (range: 48-91 ms) of target presentation. Although the timing of the express visuomotor response did not co-vary with reaction time, larger express visuomotor responses tended to precede shorter latency reaches. Further, we observed that the magnitude of the express visuomotor response could be muted by contextual context, although this effect was quite variable. Overall, the response properties in NHPs resemble those in humans. Our results establish a new benchmark for visuomotor transformations underlying visually-guided reaches, setting the stage for experiments that can directly compare the role of cortical and subcortical areas in reaching when time is of the essence.
Collapse
Affiliation(s)
- Aaron L Cecala
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Rebecca A Kozak
- Graduate Program in Neuroscience, Western University, London, Ontario N6A 5B7, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
- Department of Psychology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Kearsley SL, Cecala AL, Kozak RA, Corneil BD. Express arm responses appear bilaterally on upper-limb muscles in an arm choice reaching task. J Neurophysiol 2022; 127:969-983. [PMID: 35294268 DOI: 10.1152/jn.00494.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When required, humans can generate very short latency reaches toward visual targets, such as catching a falling cellphone. During such rapid reaches, express arm responses are the first wave of upper limb muscle recruitment, occurring ∼80-100 ms after target appearance. There is accumulating evidence that express arm responses arise from signaling along the tecto-reticulo-spinal tract, but the involvement of the reticulospinal tract has not been well studied. Since the reticulospinal tract projects bilaterally, we studied whether express arm responses would be generated bilaterally. Human participants (n = 14; 7 females) performed visually guided reaches in a modified emerging target paradigm where either arm could intercept the target. We recorded electromyographic activity bilaterally from the pectoralis major muscle. Our analysis focused on target locations where participants reached with the right arm on some trials, and the left arm on others. In support of the involvement of the reticulospinal tract, express arm responses persisted bilaterally regardless of which arm reached to the target. The latency and magnitude of the express arm response did not depend on whether the arm was chosen to reach or not. However, on the reaching arm, the magnitude of the express arm response was correlated to the level of anticipatory activity. The bilateral generation of express arm responses supports the involvement of the reticulospinal tract. We surmise that the correlation between anticipatory activity and the magnitude of express arm responses on the reaching arm arises from convergence of cortically derived signals with a parallel subcortical pathway mediating the express arm response.NEW & NOTEWORTHY Express arm responses have been proposed to arise from the tecto-reticulo-spinal tract originating within the superior colliculus, but the involvement of the reticulospinal tract has not been well studied. Here, we show these responses appear bilaterally in a task where either arm can reach to a newly appearing stimulus. Our results suggest that the most rapid visuomotor transformations for reaching are performed by a subcortical pathway.
Collapse
Affiliation(s)
- Sarah L Kearsley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Aaron L Cecala
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Rebecca A Kozak
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brian D Corneil
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|