1
|
Li W, Wilson DA. Threat Memory in the Sensory Cortex: Insights from Olfaction. Neuroscientist 2024; 30:285-293. [PMID: 36703569 DOI: 10.1177/10738584221148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The amygdala has long held the center seat in the neural basis of threat conditioning. However, a rapidly growing literature has elucidated extra-amygdala circuits in this process, highlighting the sensory cortex for its critical role in the mnemonic aspect of the process. While this literature is largely focused on the auditory system, substantial human and rodent findings on the olfactory system have emerged. The unique nature of the olfactory neuroanatomy and its intimate association with emotion compels a review of this recent literature to illuminate its special contribution to threat memory. Here, integrating recent evidence in humans and animal models, we posit that the olfactory (piriform) cortex is a primary and necessary component of the distributed threat memory network, supporting mnemonic ensemble coding of acquired threat. We further highlight the basic circuit architecture of the piriform cortex characterized by distributed, auto-associative connections, which is prime for highly efficient content-addressable memory computing to support threat memory. Given the primordial role of the piriform cortex in cortical evolution and its simple, well-defined circuits, we propose that olfaction can be a model system for understanding (transmodal) sensory cortical mechanisms underlying threat memory.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
2
|
Awasthi R, Yuan Q, Barkai E. Reversing Aging: Decline in Complex Olfactory Learning Can be Rectified by Restoring Intrinsic Plasticity of Hippocampal CA1 Pyramidal Neurons. Adv Biol (Weinh) 2024; 8:e2300323. [PMID: 38145360 DOI: 10.1002/adbi.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Indexed: 12/26/2023]
Abstract
The acquisition of complex rules requires modifications in intrinsic plasticity of excitatory neurons within relevant brain areas. Olfactory discrimination (OD) rule learning occludes slow calcium-dependent potassium current (sIAHP ) in piriform cortex (PC) pyramidal neurons, which increases their intrinsic neuronal excitability. Similar learning-induced sIAHP changes are demonstrated in hippocampal CA1. The shutdown of sIAHP is mediated by the metabotropic activation of the kainate subtype glutamatergic receptor, GluK2. Here, the duration of training required for OD rule learning increased significantly as the mice matured and aged is first shown, which appears earlier in 5xFAD mice. At the cellular biophysical level, aging is accompanied by reduction in the post-burst AHP in these neurons, while neuronal excitability remains stable. This is in contrast to aging CA1 neurons that exhibit enhanced post-burst AHPs in previous reports. Kainate reduces post-burst AHP in adults, but not in aged PC neurons, whereas it reduces post-burst AHPs in hippocampal CA1 pyramidal neurons of both young and aged mice. Overexpression of GluK2 in CA1 neurons restores OD learning capabilities in aged wild-type and 5xFAD mice, to a level comparable to young adults. Activation of GluK2 receptors in selectively vulnerable neurons can prevent aging-related cognitive decline is suggested.
Collapse
Affiliation(s)
- Richa Awasthi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| |
Collapse
|
3
|
Sepahvand T, Carew SJ, Yuan Q. The ventral hippocampus is activated in olfactory but not auditory threat memory. Front Neural Circuits 2024; 18:1371130. [PMID: 38476709 PMCID: PMC10927826 DOI: 10.3389/fncir.2024.1371130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Hippocampal networks required for associative memory formation are involved in cue- and context-dependent threat conditioning. The hippocampus is functionally heterogeneous at its dorsal and ventral poles, and recent investigations have focused on the specific roles required from each sub-region for associative conditioning. Cumulative evidence suggests that contextual and emotional information is processed by the dorsal and ventral hippocampus, respectively. However, it is not well understood how these two divisions engage in threat conditioning with cues of different sensory modalities. Here, we compare the involvement of the dorsal and ventral hippocampus in two types of threat conditioning: olfactory and auditory. Our results suggest that the dorsal hippocampus encodes contextual information and is activated upon recall of an olfactory threat memory only if contextual cues are relevant to the threat. Overnight habituation to the context eliminates dorsal hippocampal activation, implying that this area does not directly support cue-dependent threat conditioning. The ventral hippocampus is activated upon recall of olfactory, but not auditory, threat memory regardless of habituation duration. Concurrent activation of the piriform cortex is consistent with its direct connection with the ventral hippocampus. Together, our study suggests a unique role of the ventral hippocampus in olfactory threat conditioning.
Collapse
Affiliation(s)
| | | | - Qi Yuan
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NF, Canada
| |
Collapse
|
4
|
Sepahvand T, Nazari N, Qin T, Rajani V, Yuan Q. Olfactory threat extinction in the piriform cortex: An age-dependent employment of NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 2023; 120:e2309986120. [PMID: 37878718 PMCID: PMC10622944 DOI: 10.1073/pnas.2309986120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Extinction of threat memory is a measure of behavioral flexibility. In the absence of additional reinforcement, the extinction of learned behaviors allows animals and humans to adapt to their changing environment. Extinction mechanisms and their therapeutic implications for maladaptive learning have been extensively studied. However, how aging affects extinction learning is much less understood. Using a rat model of olfactory threat extinction, we show that the extinction of olfactory threat memory is impaired in aged Sprague-Darley rats. Following extinction training, long-term depression (LTD) in the piriform cortex (PC) was inducible ex vivo in aged rats and was NMDA receptor (NMDAR)-independent. On the other hand, adult rats acquired successful olfactory threat extinction, and LTD was not inducible following extinction training. Neuronal cFos activation in the posterior PC correlated with learning and extinction performance in rats. NMDAR blockade either systemically or locally in the PC during extinction training prevented successful extinction in adult rats, following which NMDAR-dependent LTD became inducible ex vivo. This suggests that extinction learning employs NMDAR-dependent LTD mechanisms in the PC of adult rats, thus occluding further LTD induction ex vivo. The rescue of olfactory threat extinction in aged rats by D-cycloserine, a partial NMDAR agonist, suggests that the impairment in olfactory threat extinction of aged animals may relate to NMDAR hypofunctioning and a lack of NMDAR-dependent LTD. These findings are consistent with an age-related switch from NMDAR-dependent to NMDAR-independent LTD in the PC. Optimizing NMDAR function in sensory cortices may improve learning and flexible behavior in the aged population.
Collapse
Affiliation(s)
- Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Negar Nazari
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Tian Qin
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Vishaal Rajani
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| |
Collapse
|
5
|
Sepahvand T, Power KD, Qin T, Yuan Q. The Basolateral Amygdala: The Core of a Network for Threat Conditioning, Extinction, and Second-Order Threat Conditioning. BIOLOGY 2023; 12:1274. [PMID: 37886984 PMCID: PMC10604397 DOI: 10.3390/biology12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Threat conditioning, extinction, and second-order threat conditioning studied in animal models provide insight into the brain-based mechanisms of fear- and anxiety-related disorders and their treatment. Much attention has been paid to the role of the basolateral amygdala (BLA) in such processes, an overview of which is presented in this review. More recent evidence suggests that the BLA serves as the core of a greater network of structures in these forms of learning, including associative and sensory cortices. The BLA is importantly regulated by hippocampal and prefrontal inputs, as well as by the catecholaminergic neuromodulators, norepinephrine and dopamine, that may provide important prediction-error or learning signals for these forms of learning. The sensory cortices may be required for the long-term storage of threat memories. As such, future research may further investigate the potential of the sensory cortices for the long-term storage of extinction and second-order conditioning memories.
Collapse
Affiliation(s)
| | | | | | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St John’s, NL A1B 3V6, Canada; (T.S.); (K.D.P.); (T.Q.)
| |
Collapse
|
6
|
Auguste A, Fourcaud-Trocmé N, Meunier D, Gros A, Garcia S, Messaoudi B, Thevenet M, Ravel N, Veyrac A. Distinct brain networks for remote episodic memory depending on content and emotional experience. Prog Neurobiol 2023; 223:102422. [PMID: 36796748 DOI: 10.1016/j.pneurobio.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.
Collapse
Affiliation(s)
- Anne Auguste
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nicolas Fourcaud-Trocmé
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - David Meunier
- University Aix Marseille, Insitut des Neurosciences de la Timone, Marseille, France
| | - Alexandra Gros
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Samuel Garcia
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Belkacem Messaoudi
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Marc Thevenet
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nadine Ravel
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Alexandra Veyrac
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France.
| |
Collapse
|