1
|
Formica S, Chaiken A, Wiersema JR, Cracco E. EEG frequency tagging reveals the integration of dissimilar observed actions. Cortex 2024; 181:204-215. [PMID: 39561654 DOI: 10.1016/j.cortex.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Extensive research has demonstrated that visual and motor cortices can simultaneously represent multiple observed actions. This ability undoubtedly constitutes a crucial ingredient for the understanding of complex visual scenes involving different agents. However, it is still unclear how these distinct representations are integrated into coherent and meaningful percepts. In line with studies of perceptual binding, we hypothesized that similar movements would be more easily integrated. To test this hypothesis, we developed an EEG frequency tagging experiment in which two hand movements were displayed simultaneously at two different presentation rates. Crucially, the degree of similarity between the two movements varied along two dimensions, namely action identity (i.e., same or different performed movement), and agent identity (i.e., one agent performing a bimanual movement, or two agents moving each one hand). Contrary to our predictions, we found a larger intermodulation oscillatory component, indexing the integrated processing of the two individual movements, when they were less similar. We propose that integration-by-dissimilarity might serve as a top-down process to solve conflict caused by incongruent movements, thus contributing to the global understanding of distinct moving individuals in a complex social scene.
Collapse
Affiliation(s)
- Silvia Formica
- Berlin School of Mind and Brain, Department of Psychology, Humboldt Universität zu Berlin, Berlin, 10117, Germany.
| | - Anna Chaiken
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, 9000, Belgium; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, 94305, USA
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, 9000, Belgium
| | - Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
2
|
Poikonen H, Tervaniemi M, Trainor L. Cortical oscillations are modified by expertise in dance and music: Evidence from live dance audience. Eur J Neurosci 2024; 60:6000-6014. [PMID: 39279232 DOI: 10.1111/ejn.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Over the past decades, the focus of brain research has expanded from using strictly controlled stimuli towards understanding brain functioning in complex naturalistic contexts. Interest has increased in measuring brain processes in natural interaction, including classrooms, theatres, concerts and museums to understand the brain functions in the real world. Here, we examined how watching a live dance performance with music in a real-world dance performance setting engages the brains of the spectators. Expertise in dance or music has been shown to modify brain functions, including when watching dance or listening to music. Therefore, we recorded electroencephalography (EEG) from an audience of dancers, musicians and novices as they watched the live dance performance and analysed their cortical oscillations. We compared intrabrain oscillations when participants watched the performance (with music) or listened to the music alone without the dance. We found that dancers have stronger fronto-central and parieto-occipital theta phase synchrony (4-8 Hz) than novices when watching dance, likely reflecting the effects of dance experience on motor imagery, multisensory and social interaction processes. Also, compared with novices, dancers had stronger delta phase synchrony (0.5-4 Hz) when listening to music, and musicians had stronger delta phase synchrony when watching dance, suggesting expertise in music and dance enhances sensitivity or attention to temporal regularities in movement and sound.
Collapse
Affiliation(s)
- Hanna Poikonen
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Professorship for Social Brain Sciences, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laurel Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
3
|
Warlop G, Cracco E, Wiersema JR, Orgs G, Deconinck FJA. An EEG frequency tagging study on biological motion perception in children with DCD. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 153:104810. [PMID: 39111260 DOI: 10.1016/j.ridd.2024.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The perception of biological motion requires accurate prediction of the spatiotemporal dynamics of human movement. Research on Developmental Coordination Disorder (DCD) suggests deficits in accurate motor prediction, raising the question whether not just action execution, but also action perception is perturbed in this disorder. AIMS To examine action perception by comparing the neural response to the observation of apparent biological motion in children with and without DCD. METHODS AND PROCEDURES Thirty-three participants with and 33 without DCD, matched based on age (13.0 ± 2.0), sex and writing hand, observed sequences of static body postures that showed either fluent or non-fluent motion, in which only the fluent condition depicted apparent biological motion. Using a recently validated paradigm combining EEG frequency tagging and apparent biological motion (Cracco et al., 2023), the perception of biological motion was contrasted with the perception of individual body postures. OUTCOMES AND CONCLUSIONS Children with DCD did not show reduced sensitivity to apparent biological motion compared with typically developing children. However, the DCD group did show a reduced brain response to repetitive visual stimuli, suggesting altered predictive processing in the perceptual domain in this group. Suggestions for further research on biological motion perception in DCD are identified.
Collapse
Affiliation(s)
- Griet Warlop
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium.
| | - Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent 9000, Belgium; Institute for Management and Organization, Leuphana University, Lüneburg 21335, Germany
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent 9000, Belgium
| | - Guido Orgs
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | | |
Collapse
|
4
|
Orgs G, Vicary S, Sperling M, Richardson DC, Williams AL. Movement synchrony among dance performers predicts brain synchrony among dance spectators. Sci Rep 2024; 14:22079. [PMID: 39333777 PMCID: PMC11436841 DOI: 10.1038/s41598-024-73438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Performing dance is an intrinsically social art form where at least one person moves while another person watches. Dancing in groups promotes social bonding, but how does group dance affect the people watching? A group of dancers and dance novices watched a 30 min dance video individually in an fMRI scanner. In a follow-up behavioural study, the same people watched the video again and provided continuous enjoyment ratings. Firstly, we computed cross-recurrence of continuous enjoyment ratings and inter-subject correlations (ISCs) in fMRI separately for both groups, and with the choreographer of the dance work. At both behavioural and neural levels, dancers responded more similarly to each other than novices. ISCs among dancers extended beyond brain areas involved in audio-visual integration and sensory areas of human movement perception into motor areas, suggesting greater sensorimotor familiarity with the observed dance movements in the expert group. Secondly, we show that dancers' brain activations and continuous ratings are more similar to the choreographer's ratings in keeping with sharing an aesthetic and artistic perspective when viewing the dance. Thirdly, we show that movement synchrony among performers is the best predictor of brain synchrony among both expert and novice spectators. This is consistent with the idea that changes in emergent movement synchrony are a key aesthetic feature of performing dance. Finally, ISCs across perceptual and motor brain areas were primarily driven by movement acceleration and synchrony, whereas ISCs in orbital and pre-frontal brain areas were overall weaker and better explained by the continuous enjoyment ratings of each group. Our findings provide strong evidence that the aesthetic appreciation of dance involves a common experience between dance spectators and the choreographer. Moreover, the similarity of brain activations and of enjoyment increases with shared knowledge of - and practice in - the artform that is being experienced, in this case contemporary performing dance.
Collapse
Affiliation(s)
- Guido Orgs
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Staci Vicary
- School of Psychological Sciences, University of Newcastle, Sydney, Australia
| | | | - Daniel C Richardson
- Department of Experimental Psychology, University College London, London, UK
| | - Adrian L Williams
- Division of Psychology, Department of Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
5
|
Galang CM, Cracco E, Brass M. Anticipated imitation of multiple agents. Cognition 2024; 249:105831. [PMID: 38797053 DOI: 10.1016/j.cognition.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
It is well-established that people tend to mimic one another's actions, a crucial aspect of social interactions. Anticipating imitation has been shown to boost motor activation and reaction times for congruent actions. However, prior research predominantly focused on dyads, leaving gaps in our knowledge regarding group dynamics. This study addresses this gap, conducting three experiments using extensive online data. Participants engaged in anticipated imitation tasks with one versus three virtual agents. The results across all three experiments (n = 77; n = 239; n = 457) consistently support the existence of an anticipated imitation effect, with faster reaction times for congruent actions. Furthermore, the research unveils a social facilitation effect, with participants reacting more swiftly when anticipating three agents compared to one. However, we did not find the expected increase of the congruency effect with multiple agents; rather, the data indicates that anticipating multiple agents instead decreases this effect. These findings are discussed within the framework of ideomotor theory, offering insights into how they relate to recent research on the automatic imitation of multiple agents.
Collapse
Affiliation(s)
- Carl Michael Galang
- Social Intelligence Lab, Department of Psychology & The Berlin School of Mind & Brain, Humboldt University of Berlin, Berlin, Germany.
| | - Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Institute for Management and Organization, Leuphana University, Luneburg, Germany
| | - Marcel Brass
- Social Intelligence Lab, Department of Psychology & The Berlin School of Mind & Brain, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Cracco E, Papeo L, Wiersema JR. Evidence for a role of synchrony but not common fate in the perception of biological group movements. Eur J Neurosci 2024; 60:3557-3571. [PMID: 38706370 DOI: 10.1111/ejn.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Extensive research has shown that observers are able to efficiently extract summary information from groups of people. However, little is known about the cues that determine whether multiple people are represented as a social group or as independent individuals. Initial research on this topic has primarily focused on the role of static cues. Here, we instead investigate the role of dynamic cues. In two experiments with male and female human participants, we use EEG frequency tagging to investigate the influence of two fundamental Gestalt principles - synchrony and common fate - on the grouping of biological movements. In Experiment 1, we find that brain responses coupled to four point-light figures walking together are enhanced when they move in sync vs. out of sync, but only when they are presented upright. In contrast, we found no effect of movement direction (i.e., common fate). In Experiment 2, we rule out that synchrony takes precedence over common fate by replicating the null effect of movement direction while keeping synchrony constant. These results suggest that synchrony plays an important role in the processing of biological group movements. In contrast, the role of common fate is less clear and will require further research.
Collapse
Affiliation(s)
- Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) & Université Claude Bernard Lyon 1, Bron, France
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Oomen D, Wiersema JR, Orgs G, Cracco E. Top-down biological motion perception does not differ between adults scoring high versus low on autism traits. Biol Psychol 2024; 190:108820. [PMID: 38815896 DOI: 10.1016/j.biopsycho.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The perception of biological motion is an important social cognitive ability. Models of biological motion perception recognize two processes that contribute to the perception of biological motion: a bottom-up process that binds optic-flow patterns into a coherent percept of biological motion and a top-down process that binds sequences of body-posture 'snapshots' over time into a fluent percept of biological motion. The vast majority of studies on autism and biological motion perception have used point-light figure stimuli, which elicit biological motion perception predominantly via bottom-up processes. Here, we investigated whether autism is associated with deviances in the top-down processing of biological motion. For this, we tested a sample of adults scoring low vs high on autism traits on a recently validated EEG paradigm in which apparent biological motion is combined with frequency tagging (Cracco et al., 2022) to dissociate between two percepts: 1) the representation of individual body postures, and 2) their temporal integration into movements. In contrast to our hypothesis, we found no evidence for a diminished temporal body posture integration in the high-scoring group. We did, however, find a group difference that suggests that adults scoring high on autism traits have a visual processing style that focuses more on a single percept (i.e. either body postures or movements, contingent on saliency) compared to adults scoring low on autism traits who instead seemed to represent the two percepts included in the paradigm in a more balanced manner. Although unexpected, this finding aligns well with the autism literature on perceptual stability.
Collapse
Affiliation(s)
- Danna Oomen
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium; EXPLORA, Ghent University, Belgium; Institute for Management and Organization, Leuphana University, Germany.
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium; EXPLORA, Ghent University, Belgium
| | - Guido Orgs
- Institute of Cognitive Neuroscience, University College London, UK
| | - Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium; EXPLORA, Ghent University, Belgium
| |
Collapse
|
8
|
Tsantani M, Yon D, Cook R. Neural Representations of Observed Interpersonal Synchrony/Asynchrony in the Social Perception Network. J Neurosci 2024; 44:e2009222024. [PMID: 38527811 PMCID: PMC11097257 DOI: 10.1523/jneurosci.2009-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 03/27/2024] Open
Abstract
The visual perception of individuals is thought to be mediated by a network of regions in the occipitotemporal cortex that supports specialized processing of faces, bodies, and actions. In comparison, we know relatively little about the neural mechanisms that support the perception of multiple individuals and the interactions between them. The present study sought to elucidate the visual processing of social interactions by identifying which regions of the social perception network represent interpersonal synchrony. In an fMRI study with 32 human participants (26 female, 6 male), we used multivoxel pattern analysis to investigate whether activity in face-selective, body-selective, and interaction-sensitive regions across the social perception network supports the decoding of synchronous versus asynchronous head-nodding and head-shaking. Several regions were found to support significant decoding of synchrony/asynchrony, including extrastriate body area (EBA), face-selective and interaction-sensitive mid/posterior right superior temporal sulcus, and occipital face area. We also saw robust cross-classification across actions in the EBA, suggestive of movement-invariant representations of synchrony/asynchrony. Exploratory whole-brain analyses also identified a region of the right fusiform cortex that responded more strongly to synchronous than to asynchronous motion. Critically, perceiving interpersonal synchrony/asynchrony requires the simultaneous extraction and integration of dynamic information from more than one person. Hence, the representation of synchrony/asynchrony cannot be attributed to augmented or additive processing of individual actors. Our findings therefore provide important new evidence that social interactions recruit dedicated visual processing within the social perception network that extends beyond that engaged by the faces and bodies of the constituent individuals.
Collapse
Affiliation(s)
- Maria Tsantani
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Richard Cook
- School of Psychology, University of Leeds, Leeds LS2 9JU, United Kingdom
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
9
|
McEllin L, Sebanz N. Synchrony Influences Estimates of Cooperation in a Public-Goods Game. Psychol Sci 2024; 35:202-212. [PMID: 38285534 DOI: 10.1177/09567976231223410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Benefiting from a cooperative interaction requires people to estimate how cooperatively other members of a group will act so that they can calibrate their own behavior accordingly. We investigated whether the synchrony of a group's actions influences observers' estimates of cooperation. Participants (recruited through Prolific) watched animations of actors deciding how much to donate in a public-goods game and using a mouse to drag donations to a public pot. Participants then estimated how much was in the pot in total (as an index of how cooperative they thought the group members were). Experiment 1 (N = 136 adults) manipulated the synchrony between players' decision-making time, and Experiment 2 (N = 136 adults) manipulated the synchrony between players' decision-implementing movements. For both experiments, estimates of how much was in the pot were higher for synchronous than asynchronous groups, demonstrating that the temporal dynamics of an interaction contain signals of a group's level of cooperativity.
Collapse
Affiliation(s)
- Luke McEllin
- Department of Cognitive Science, Central European University
| | - Natalie Sebanz
- Department of Cognitive Science, Central European University
| |
Collapse
|
10
|
Monroy E, Orgs G, Sagiv N. Aesthetic preference in the production of image sequences. Front Psychol 2023; 14:1165143. [PMID: 38098532 PMCID: PMC10720618 DOI: 10.3389/fpsyg.2023.1165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction This research uses the production method to study aesthetic preference for sequences of human body postures. In two experiments, participants produced image sequences based on their aesthetic preferences, while we measured the visual aesthetic features displayed in the compositions. Methods In Experiment 1, participants created static image sequences based on their preferences. In Experiment 2, participants sorted images into apparent motion sequences they preferred to view. Results In Experiment 1, good continuation of successive bodies and body-like objects was the preferred order. In Experiment 2, participants preferred abstract images with local sequential symmetry and human body postures exhibiting global sequential symmetry. Discussion Our findings are compared to those of previous studies that employed the more widely used method of choice. Our experiments propose novel methods and conceptualizations for investigating aesthetic preferences for human body movement and other types of stimulus sequences.
Collapse
Affiliation(s)
- Ernesto Monroy
- Department of Psychology, Brunel University London, London, United Kingdom
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | - Guido Orgs
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Noam Sagiv
- Department of Psychology, Brunel University London, London, United Kingdom
| |
Collapse
|
11
|
Giari G, Vignali L, Xu Y, Bottini R. MEG frequency tagging reveals a grid-like code during attentional movements. Cell Rep 2023; 42:113209. [PMID: 37804506 DOI: 10.1016/j.celrep.2023.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Grid-cells firing fields tile the environment with a 6-fold periodicity during both locomotion and visual exploration. Here, we tested, in humans, whether movements of covert attention elicit grid-like coding using frequency tagging. Participants observed visual trajectories presented sequentially at fixed rate, allowing different spatial periodicities (e.g., 4-, 6-, and 8-fold) to have corresponding temporal periodicities (e.g., 1, 1.5, and 2 Hz), thus resulting in distinct spectral responses. We found a higher response for the (grid-like) 6-fold periodicity and localized this effect in medial-temporal sources. In a control experiment featuring the same temporal periodicity but lacking spatial structure, the 6-fold effect did not emerge, suggesting its dependency on spatial movements of attention. We report evidence that grid-like signals in the human medial-temporal lobe can be elicited by covert attentional movements and suggest that attentional coding may provide a suitable mechanism to support the activation of cognitive maps during conceptual navigation.
Collapse
Affiliation(s)
- Giuliano Giari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
12
|
Foster Vander Elst O, Foster NHD, Vuust P, Keller PE, Kringelbach ML. The Neuroscience of Dance: A Conceptual Framework and Systematic Review. Neurosci Biobehav Rev 2023; 150:105197. [PMID: 37100162 DOI: 10.1016/j.neubiorev.2023.105197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ancient and culturally universal, dance pervades many areas of life and has multiple benefits. In this article, we provide a conceptual framework and systematic review, as a guide for researching the neuroscience of dance. We identified relevant articles following PRISMA guidelines, and summarised and evaluated all original results. We identified avenues for future research in: the interactive and collective aspects of dance; groove; dance performance; dance observation; and dance therapy. Furthermore, the interactive and collective aspects of dance constitute a vital part of the field but have received almost no attention from a neuroscientific perspective so far. Dance and music engage overlapping brain networks, including common regions involved in perception, action, and emotion. In music and dance, rhythm, melody, and harmony are processed in an active, sustained pleasure cycle giving rise to action, emotion, and learning, led by activity in specific hedonic brain networks. The neuroscience of dance is an exciting field, which may yield information concerning links between psychological processes and behaviour, human flourishing, and the concept of eudaimonia.
Collapse
Affiliation(s)
- Olivia Foster Vander Elst
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| |
Collapse
|
13
|
Cracco E, Oomen D, Papeo L, Wiersema JR. Using EEG movement tagging to isolate brain responses coupled to biological movements. Neuropsychologia 2022; 177:108395. [PMID: 36272677 DOI: 10.1016/j.neuropsychologia.2022.108395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
Detecting biological motion is essential for adaptive social behavior. Previous research has revealed the brain processes underlying this ability. However, brain activity during biological motion perception captures a multitude of processes. As a result, it is often unclear which processes reflect movement processing and which processes reflect secondary processes that build on movement processing. To address this issue, we developed a new approach to measure brain responses directly coupled to observed movements. Specifically, we showed 30 male and female adults a point-light walker moving at a pace of 2.4 Hz and used EEG frequency tagging to measure the brain response coupled to that pace ('movement tagging'). The results revealed a reliable response at the walking frequency that was reduced by two manipulations known to disrupt biological motion perception: phase scrambling and inversion. Interestingly, we also identified a brain response at half the walking frequency (i.e., 1.2 Hz), corresponding to the rate at which the individual dots completed a cycle. In contrast to the 2.4 Hz response, the response at 1.2 Hz was increased for scrambled (vs. unscrambled) walkers. These results show that frequency tagging can be used to capture the visual processing of biological movements and can dissociate between global (2.4 Hz) and local (1.2 Hz) processes involved in biological motion perception, at different frequencies of the brain signal.
Collapse
Affiliation(s)
- Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.
| | - Danna Oomen
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de La Recherche Scientifique (CNRS) & Université Claude Bernard Lyon 1, 69675 Bron, France
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
14
|
Cheng Y, Liu W, Yuan X, Jiang Y. Following Other People's Footsteps: A Contextual-Attraction Effect Induced by Biological Motion. Psychol Sci 2022; 33:1522-1531. [PMID: 35985032 DOI: 10.1177/09567976221091211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our visual system is bombarded with numerous social interactions that form intangible social bonds among people, as exemplified by synchronized walking in crowds. Here, we investigated whether these perceived social bonds implicitly intrude on visual perception and induce a contextual effect. Using multiple point-light walkers and a classical contextual paradigm, we tested 72 college-age adults across six experiments and found that the perceived direction of the central walker was attracted toward the direction of the surrounding walkers. The observed contextual-attraction effect occurred even when the surrounding walkers differed from the central walker in gender and walking speed but disappeared when they were asynchronously presented or replaced by inanimate motion. Strikingly, this contextual-attraction effect partially persisted in the context of local motion rather than static figures. These findings, in contrast to the typical contextual-repulsion effect, lend support for the distinctiveness of perceived social bonds on contextual modulation and suggest a specialized contextual mechanism tuned to social factors.
Collapse
Affiliation(s)
- Yuhui Cheng
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences.,Department of Psychology, University of Chinese Academy of Sciences.,Chinese Institute for Brain Research, Beijing, China
| | - Wenjie Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences.,Department of Psychology, University of Chinese Academy of Sciences.,Chinese Institute for Brain Research, Beijing, China
| | - Xiangyong Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences.,Department of Psychology, University of Chinese Academy of Sciences.,Chinese Institute for Brain Research, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences.,Department of Psychology, University of Chinese Academy of Sciences.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
15
|
Farrera A, Ramos-Fernández G. Collective Rhythm as an Emergent Property During Human Social Coordination. Front Psychol 2022; 12:772262. [PMID: 35222144 PMCID: PMC8868940 DOI: 10.3389/fpsyg.2021.772262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
The literature on social interactions has shown that participants coordinate not only at the behavioral but also at the physiological and neural levels, and that this coordination gives a temporal structure to the individual and social dynamics. However, it has not been fully explored whether such temporal patterns emerge during interpersonal coordination beyond dyads, whether this phenomenon arises from complex cognitive mechanisms or from relatively simple rules of behavior, or which are the sociocultural processes that underlie this phenomenon. We review the evidence for the existence of group-level rhythmic patterns that result from social interactions and argue that the complexity of group dynamics can lead to temporal regularities that cannot be predicted from the individual periodicities: an emergent collective rhythm. Moreover, we use this interpretation of the literature to discuss how taking into account the sociocultural niche in which individuals develop can help explain the seemingly divergent results that have been reported on the social influences and consequences of interpersonal coordination. We make recommendations on further research to test these arguments and their relationship to the feeling of belonging and assimilation experienced during group dynamics.
Collapse
Affiliation(s)
- Arodi Farrera
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriel Ramos-Fernández
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|