1
|
Zapparoli L, Mariano M, Sacheli LM, Berni T, Negrone C, Toneatto C, Paulesu E. Self-other distinction modulates the sense of self-agency during joint actions. Sci Rep 2024; 14:30055. [PMID: 39627377 PMCID: PMC11615402 DOI: 10.1038/s41598-024-80880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
In daily life interactions, we achieve goals with partners through tight temporal coordination or sequential joint efforts. Is our individual sense of control over shared outcomes (sense of self-agency) the same as the one experienced when we act alone? Do we explicitly and implicitly feel like we are fully in control of the motor act even if the goal is finally achieved by our partner? To address these questions, we measured explicit and implicit sense of self-agency in individual and (coordinated or sequential) interactive contexts. We studied 42 healthy adult participants during active/passive button presses aimed at turning on a light bulb. This goal could be achieved individually (Solo condition) or by interacting with a partner (Joint condition) synchronously (joint Coordination task) or sequentially (joint Sequential task). We collected trial-by-trial explicit judgments of self-agency. To quantify the intentional binding phenomenon, an index of implicit sense of agency, we also measured the perceived compression of the time interval between the active or passive movements and their outcomes. Explicit sense of agency: we observed decreased judgments of self-agency in Joint trials compared with the Solo ones in both the Coordination and Sequential tasks. Implicit sense of agency: in the Coordination task, we found a significant intentional binding effect only in Solo trials but not in Joint ones. For the Sequential task, however, a significant intentional binding was also present in the Joint condition. Our results indicate that the individual sense of agency is reduced during joint actions, yet this can be restored at an implicit level when the format of the motor interaction makes the individual contribution to goal achievement more obvious. We discuss these results considering current cognitive theories on motor awareness and interactions.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy.
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| | - Marika Mariano
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
| | - Lucia Maria Sacheli
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Tommaso Berni
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
| | - Caterina Negrone
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
| | - Carlo Toneatto
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
2
|
Schmitz L, Wahn B, Krüger M. Attention allocation in complementary joint action: How joint goals affect spatial orienting. Atten Percept Psychophys 2024; 86:1574-1593. [PMID: 37684501 PMCID: PMC11557662 DOI: 10.3758/s13414-023-02779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
When acting jointly, individuals often attend and respond to the same object or spatial location in complementary ways (e.g., when passing a mug, one person grasps its handle with a precision grip; the other receives it with a whole-hand grip). At the same time, the spatial relation between individuals' actions affects attentional orienting: one is slower to attend and respond to locations another person previously acted upon than to alternate locations ("social inhibition of return", social IOR). Achieving joint goals (e.g., passing a mug), however, often requires complementary return responses to a co-actor's previous location. This raises the question of whether attentional orienting, and hence the social IOR, is affected by the (joint) goal our actions are directed at. The present study addresses this question. Participants responded to cued locations on a computer screen, taking turns with a virtual co-actor. They pursued either an individual goal or performed complementary actions with the co-actor, in pursuit of a joint goal. Four experiments showed that the social IOR was significantly modulated when participant and co-actor pursued a joint goal. This suggests that attentional orienting is affected not only by the spatial but also by the social relation between two agents' actions. Our findings thus extend research on interpersonal perception-action effects, showing that the way another agent's perceived action shapes our own depends on whether we share a joint goal with that agent.
Collapse
Affiliation(s)
- Laura Schmitz
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany.
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Basil Wahn
- Institute of Educational Research, Ruhr University Bochum, Bochum, Germany
| | - Melanie Krüger
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Bloechle JL, Audiffren J, Le Naour T, Alli A, Simoni D, Wüthrich G, Bresciani JP. It's not all in your feet: Improving penalty kick performance with human-avatar interaction and machine learning. Innovation (N Y) 2024; 5:100584. [PMID: 38445019 PMCID: PMC10912701 DOI: 10.1016/j.xinn.2024.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Penalty kicks are increasingly decisive in major international football competitions. Yet, over 30% of shootout kicks are missed. The outcome of the kick often relies on the ability of the penalty taker to exploit anticipatory movements of the goalkeeper to redirect the kick toward the open side of the goal. Unfortunately, this ability is difficult to train using classical methods. We used an augmented reality simulator displaying an holographic goalkeeper to test and train penalty kick performance with 13 young elite players. Machine learning algorithms were used to optimize the learning rate by maintaining an optimal level of training difficulty. Ten training sessions of 20 kicks reduced the redirection threshold by 120 ms, which constituted a 28% reduction with respect to the baseline threshold. Importantly, redirection threshold reduction was observed for all trained players, and all things being equal, it corresponded to an estimated 35% improvement of the success rate.
Collapse
Affiliation(s)
- Jean-Luc Bloechle
- Control and Perception Laboratory, University of Fribourg, Bd Perolles 90, 1700 Fribourg, Switzerland
| | - Julien Audiffren
- Control and Perception Laboratory, University of Fribourg, Bd Perolles 90, 1700 Fribourg, Switzerland
| | - Thibaut Le Naour
- Motion-up, Le Prisme, Place Albert Einstein, 56000 Vannes, France
| | - Andrea Alli
- Control and Perception Laboratory, University of Fribourg, Bd Perolles 90, 1700 Fribourg, Switzerland
| | - Dylan Simoni
- Control and Perception Laboratory, University of Fribourg, Bd Perolles 90, 1700 Fribourg, Switzerland
| | | | - Jean-Pierre Bresciani
- Control and Perception Laboratory, University of Fribourg, Bd Perolles 90, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Riva G, Wiederhold BK, Mantovani F. Searching for the Metaverse: Neuroscience of Physical and Digital Communities. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:9-18. [PMID: 37057986 PMCID: PMC10794843 DOI: 10.1089/cyber.2023.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
What distinguishes real-world communities from their online counterparts? Social and cognitive neuroscience research on social networks and collective intentionality will be used in the article to answer this question. Physical communities are born in places. And places engage "we-mode" neurobiological and cognitive processes as behavioral synchrony, shared attention, deliberate attunement, interbrain synchronization, and so on, which create coherent social networks of very different individuals who are supported by a "wisdom of crowd." Digital technologies remove physical boundaries, giving people more freedom to choose their activities and groups. At the same time, however, the lack of physical co-presence of community members significantly reduces their possibility of activating "we-mode" cognitive processes and social motivation. Because of this, unlike physical communities that allow interaction between people from varied origins and stories, digital communities are always made up of people who have the same interests and knowledge (communities of practice). This new situation disrupts the "wisdom of crowd," making the community more radical and less accurate (polarization effect), allowing influential users to wield disproportionate influence over the group's beliefs, and producing inequalities in the distribution of social capital. However, a new emergent technology-the Metaverse-has the potential to reverse this trend. Several studies have revealed that virtual and augmented reality-the major technologies underlying the Metaverse-can engage the same neurobiological and cognitive "we-mode" processes as real-world environments. If the many flaws in this technology are fixed, it might encourage people to engage in more meaningful and constructive interactions in online communities.
Collapse
Affiliation(s)
- Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Brenda K. Wiederhold
- Virtual Reality Medical Center, La Jolla, California, USA
- Virtual Reality Medical Institute, Brussels, Belgium
| | - Fabrizia Mantovani
- Centre for Studies in Communication Sciences “Luigi Anolli” (CESCOM), Department of Human Sciences for Education “Riccardo Massa,” University of Milano Bicocca, Milan, Italy
| |
Collapse
|
6
|
Lender A, Perdikis D, Gruber W, Lindenberger U, Müller V. Dynamics in interbrain synchronization while playing a piano duet. Ann N Y Acad Sci 2023; 1530:124-137. [PMID: 37824090 DOI: 10.1111/nyas.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Humans interact with each other through actions that are implemented by sensory and motor processes. To investigate the role of interbrain synchronization emerging during interpersonal action coordination, electroencephalography data from 13 pairs of pianists were recorded simultaneously while they performed a duet together. The study aimed to investigate whether interbrain phase couplings can be reduced to similar bottom-up driven processes during synchronous play, or rather represent cognitive top-down control required during periods of higher coordination demands. To induce such periods, one of the musicians acted as a confederate who deliberately desynchronized the play. As intended, on the behavioral level, the perturbation caused a breakdown in the synchronization of the musicians' play and in its stability across trials. On the brain level, interbrain synchrony, as measured by the interbrain phase coherence (IPC), increased in the delta and theta frequency bands during perturbation as compared to non-perturbed trials. Interestingly, this increase in IPC in the delta band was accompanied by the shift of the phase difference angle from in-phase toward anti-phase synchrony. In conclusion, the current study demonstrates that interbrain synchronization is based on the interpersonal temporal alignment of different brain mechanisms and is not simply reducible to similar sensory or motor responses.
Collapse
Affiliation(s)
- Anja Lender
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Dionysios Perdikis
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Walter Gruber
- Department of Physiological Psychology, University of Salzburg, Salzburg, Austria
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Viktor Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| |
Collapse
|
7
|
Sacheli LM, Diana L, Ravani A, Beretta S, Bolognini N, Paulesu E. Neuromodulation of the Left Inferior Frontal Cortex Affects Social Monitoring during Motor Interactions. J Cogn Neurosci 2023; 35:1788-1805. [PMID: 37677055 DOI: 10.1162/jocn_a_02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Motor interactions require observing and monitoring a partner's performance as the interaction unfolds. Studies in monkeys suggest that this form of social monitoring might be mediated by the activity of the ventral premotor cortex (vPMc), a critical brain region in action observation and motor planning. Our previous fMRI studies in humans showed that the left vPMc is indeed recruited during social monitoring, but its causal role is unexplored. In three experiments, we applied online anodal or cathodal transcranial direct current stimulation over the left lateral frontal cortex during a music-like interactive task to test the hypothesis that neuromodulation of the left vPMc affects participants' performance when a partner violates the agent's expectations. Participants played short musical sequences together with a virtual partner by playing one note each in turn-taking. In 50% of the trials, the partner violated the participant's expectations by generating the correct note through an unexpected movement. During sham stimulation, the partner's unexpected behavior led to a slowdown in the participant's performance (observation-induced posterror slowing). A significant interaction with the stimulation type showed that cathodal and anodal transcranial direct current stimulation induced modulation of the observation-induced posterror slowing in opposite directions by reducing or enhancing it, respectively. Cathodal stimulation significantly reduced the effect compared to sham stimulation. No effect of neuromodulation was found when the partner behaved as expected or when the observed violation occurred within a context that was perceptually matched but noninteractive in nature. These results provide evidence for the critical causal role that the left vPMc might play in social monitoring during motor interactions, possibly through the interplay with other brain regions in the posterior medial frontal cortex.
Collapse
Affiliation(s)
| | | | | | | | - Nadia Bolognini
- University of Milano-Bicocca
- IRCCS Istituto Auxologico Italiano
| | - Eraldo Paulesu
- University of Milano-Bicocca
- IRCCS Istituto Ortopedico Galeazzi, Italy
| |
Collapse
|
8
|
Rocca M, Sacheli LM, Romeo L, Cavallo A. Visuo-motor interference is modulated by task interactivity: A kinematic study. Psychon Bull Rev 2023; 30:1788-1801. [PMID: 37127813 PMCID: PMC10716078 DOI: 10.3758/s13423-023-02297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Extensive evidence shows that action observation can influence action execution, a phenomenon often referred to as visuo-motor interference. Little is known about whether this effect can be modulated by the type of interaction agents are involved in, as different studies show conflicting results. In the present study, we aimed at shedding light on this question by recording and analyzing the kinematic unfolding of reach-to-grasp movements performed in interactive and noninteractive settings. Using a machine learning approach, we investigated whether the extent of visuo-motor interference would be enhanced or reduced in two different joint action settings compared with a noninteractive one. Our results reveal that the detrimental effect of visuo-motor interference is reduced when the action performed by the partner is relevant to achieve a common goal, regardless of whether this goal requires to produce a concrete sensory outcome in the environment (joint outcome condition) or only a joint movement configuration (joint movement condition). These findings support the idea that during joint actions we form dyadic motor plans, in which both our own and our partner's actions are represented in predictive terms and in light of the common goal to be achieved. The formation of a dyadic motor plan might allow agents to shift from the automatic simulation of an observed action to the active prediction of the consequences of a partner's action. Overall, our results demonstrate the unavoidable impact of others' action on our motor behavior in social contexts, and how strongly this effect can be modulated by task interactivity.
Collapse
Affiliation(s)
- Matilde Rocca
- Department of Psychology and Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Lucia Maria Sacheli
- Department of Psychology and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milano, Italy
| | - Luca Romeo
- Department of Economics and Law, University of Macerata, Macerata, Italy
- Computational Statistics and Machine Learning Laboratory, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Cavallo
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
- Move'N'Brains Lab, Department of Psychology, University of Torino, Torino, Italy.
| |
Collapse
|
9
|
Emergent and planned interpersonal synchronization are both sensitive to 'tempo aftereffect contagion'. Neuropsychologia 2023; 181:108492. [PMID: 36736856 DOI: 10.1016/j.neuropsychologia.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Interpersonal synchronization is fundamental for motor coordination during social interactions. Discerning emergent (entrainment) from planned synchronization represents a non-trivial issue in visually bonded individuals acting together, as well as assessing whether inter-individual differences, e.g., in autistic traits, modulate both types of synchronization. In a visuomotor finger-tapping task, two participants replicated a target tempo either synchronizing ('joint' condition) or not ('non-interactive' condition, 'non-int') with each other. One participant was exposed ('induced') to tempo aftereffect (a medium tempo seems faster or slower after exposure to slower or faster inducing tempi), but not the other participant ('not induced'); thus they had different timing perceptions of the same target. We assessed to what degree emergent and/or planned synchronization affected dyads by analyzing inter-tap-intervals, synchronization indexes, and cross-correlation coefficients. Results revealed a 'tempo aftereffect contagion': inter-tap-intervals of both induced and not-induced participants showed aftereffect in both the joint and non-int conditions. Moreover, aftereffects did not correlate across conditions suggesting they might be due to (at least in part) different processes, but the propensity for tempo aftereffect contagion correlated with individuals' autistic traits only in the non-int condition. Finally, participants co-adjusted their tapping more in the joint condition than in the non-int one, as confirmed by higher synchronization indexes and the mutual adaptation pattern of cross-correlation coefficients. Altogether, these results show the subtle interplay between emergent and planned interpersonal synchronization mechanisms that act on a millisecond timescale independently from synching or not with the partner.
Collapse
|
10
|
Sacheli LM, Roberti E, Turati C. Encoding interactive scripts at 10 months of age. J Exp Child Psychol 2023; 227:105588. [PMID: 36512919 DOI: 10.1016/j.jecp.2022.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
Understanding action-reaction associations that give origin to interactive scripts (e.g., give-and-take interactions) is essential for appreciating social exchanges. However, studies on infants' action understanding have mainly investigated the case of actions performed by individual agents. Moreover, although extensive literature has explored infants' comprehension of action-effect relationships in object functioning, no study has addressed whether it also plays a role when observing social interactions, an issue we addressed here. In a first study, 10-month-old infants observed short videos of dyadic exchanges. We investigated whether they were able to link specific human gestures directed toward another person to specific vocal reactions in the receiver. We used a double-habituation paradigm in which infants were sequentially habituated to two specific action-reaction associations. In the test phase, infants watched one of the two habituated (Familiar) videos, a video with a reversed action-reaction association (Violation), and a Novel video. Results showed that the infants looked longer at both the Novel and Violation test trials than at the Familiar test trials. In a control study, we show that these results could not be accounted for by associative learning; indeed, learning of the action-reaction association did not occur when the vocalization was not produced by the receiver but only contingent on the agent's action. Thus, we show that 10-month-old infants can encode specific social action-effect relationships during the observation of dyadic interactions and that the interactivity of the social context may be critical to shaping young infants' understanding of others' behaviors.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20126 Milano, Italy.
| | - Elisa Roberti
- Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20126 Milano, Italy
| | - Chiara Turati
- Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
11
|
Fini C, Bolis D, Moreau Q, Era V. Editorial: Physical and psychological proximity in humans: From the body to the mind and vice-versa. Front Psychol 2023; 14:1113851. [PMID: 36818105 PMCID: PMC9933708 DOI: 10.3389/fpsyg.2023.1113851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Chiara Fini
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Dimitris Bolis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Quentin Moreau
- Precision Psychiatry and Social Physiology Laboratory (PPSP), CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Psychiatry, University of Montréal, Montreal, QC, Canada
| | - Vanessa Era
- Department of Psychology, Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Fondazione Istituto Italiano Di Tecnologia (IIT), Sapienza University of Rome and Center for Life Nano- & Neuroscience, Rome, Italy
| |
Collapse
|
12
|
Sacheli LM, Verga C, Zapparoli L, Seghezzi S, Tomasetig G, Banfi G, Paulesu E. When action prediction grows old: An fMRI study. Hum Brain Mapp 2022; 44:373-387. [PMID: 35997233 PMCID: PMC9842895 DOI: 10.1002/hbm.26049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Predicting the unfolding of others' actions (action prediction) is crucial for successfully navigating the social world and interacting efficiently. Age-related changes in this domain have remained largely unexplored, especially for predictions regarding simple gestures and independent of contextual information or motor expertise. Here, we evaluated whether healthy aging impacts the neurophysiological processes recruited to anticipate, from the observation of implied-motion postures, the correct conclusion of simple grasping and pointing actions. A color-discrimination task served as a control condition to assess the specificity of the age-related effects. Older adults showed reduced efficiency in performance that was yet not specific to the action prediction task. Nevertheless, fMRI results revealed task-specific age-related differences: while both groups showed stronger recruitment of the lateral occipito-temporal cortex bilaterally during the action prediction than the control task, the younger participants additionally showed a higher bilateral engagement of parietal regions. Importantly, in both groups, the recruitment of visuo-motor processes in the right posterior parietal cortex was a predictor of good performance. These results support the hypothesis of decreased involvement of sensorimotor processes in cognitive tasks when processing action- and body-related stimuli in healthy aging. These results have implications for social interaction, which requires the fast reading of others' gestures.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Chiara Verga
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,Department of Psychology, Faculty of Medicine and PsychologySapienza University of RomeRomeItaly
| | - Laura Zapparoli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Silvia Seghezzi
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giulia Tomasetig
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico GaleazziMilanItaly,San Raffaele Vita e Salute UniversityMilanItaly
| | - Eraldo Paulesu
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| |
Collapse
|
13
|
Curioni A. What makes us act together? On the cognitive models supporting humans’ decisions for joint action. Front Integr Neurosci 2022; 16:900527. [PMID: 35990592 PMCID: PMC9381741 DOI: 10.3389/fnint.2022.900527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
We face tasks every day that we can solve alone but decide to solve together with others. When do we choose to act together vs. alone? How long do we persist in working together when doing so is difficult? Do we prefer to act together when times are uncertain? An open question in joint action research is under what conditions humans prefer to act together or alone to achieve a certain goal, and whether their preference is based on a utility calculus that takes into account the costs and benefits associated with individual and joint action alternatives. Research on cooperation reveals that frequent engagement in joint activities provides high survival benefits, as it allows individuals to achieve goals together that are otherwise unavailable. Yet, survival advantage does not wholly explain the reasons for human cooperative behavior. In fact, humans are motivated to cooperate even when it is not necessary to achieve an outcome. Research in cognitive science suggests that navigating the potential costs of joint actions is a challenge for humans, and that joint actions might provide individuals with rewards that go beyond the achievement of instrumental goals. We here address the influence of key factors on the decision to engage in joint action, such as the coordination costs arising when acting together compared to alone and the social and instrumental rewards expected when acting together compared to alone. Addressing these questions will provide critical insight for the design of cognitive models of human decisions for cooperation.
Collapse
|