1
|
Yeatman JD. Primate brain: A unique connection between dorsal and ventral visual cortex. Curr Biol 2024; 34:R779-R781. [PMID: 39163839 DOI: 10.1016/j.cub.2024.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In humans and other primates, vision is subserved by at least two parallel processing streams that are interconnected through a pathway known as the vertical occipital fasciculus. New research reveals that this white matter pathway may be a unique feature of the primate brain.
Collapse
Affiliation(s)
- Jason D Yeatman
- Center for Educational Research at Stanford, 520 Galvez Mall, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Meisler SL, Kubota E, Grotheer M, Gabrieli JDE, Grill-Spector K. A practical guide for combining functional regions of interest and white matter bundles. Front Neurosci 2024; 18:1385847. [PMID: 39221005 PMCID: PMC11363198 DOI: 10.3389/fnins.2024.1385847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Diffusion-weighted imaging (DWI) is the primary method to investigate macro- and microstructure of neural white matter in vivo. DWI can be used to identify and characterize individual-specific white matter bundles, enabling precise analyses on hypothesis-driven connections in the brain and bridging the relationships between brain structure, function, and behavior. However, cortical endpoints of bundles may span larger areas than what a researcher is interested in, challenging presumptions that bundles are specifically tied to certain brain functions. Functional MRI (fMRI) can be integrated to further refine bundles such that they are restricted to functionally-defined cortical regions. Analyzing properties of these Functional Sub-Bundles (FSuB) increases precision and interpretability of results when studying neural connections supporting specific tasks. Several parameters of DWI and fMRI analyses, ranging from data acquisition to processing, can impact the efficacy of integrating functional and diffusion MRI. Here, we discuss the applications of the FSuB approach, suggest best practices for acquiring and processing neuroimaging data towards this end, and introduce the FSuB-Extractor, a flexible open-source software for creating FSuBs. We demonstrate our processing code and the FSuB-Extractor on an openly-available dataset, the Natural Scenes Dataset.
Collapse
Affiliation(s)
- Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg, Germany
| | - John D. E. Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity, and category-selectivity from birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605705. [PMID: 39131283 PMCID: PMC11312531 DOI: 10.1101/2024.07.29.605705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here, we scanned newborn to 6-month-old infants and adults and used a data-driven approach to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity, and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, and parietal, and somatosensory cortex, and increases to lateral prefrontal cortex. Additionally, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data have important implications for theories of cortical functional development and open new possibilities for understanding typical and atypical white matter development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Sarah Tung
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, Peretsmfan Scully Hall, Princeton, NJ 08540, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Frankfurter Str. 35, Marburg 35037, Germany
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
| | - Vaidehi S. Natu
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Baldinger Str., Marburg 35043, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, 288 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
4
|
Yablonski M, Karipidis II, Kubota E, Yeatman JD. The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Hum Brain Mapp 2024; 45:e26655. [PMID: 38488471 PMCID: PMC10941549 DOI: 10.1002/hbm.26655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the visual word form area (VWFA). Recent findings suggest that this text-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions also exhibit different patterns of functional connectivity. To this end, we capitalize on two complementary datasets: Using the Natural Scenes Dataset (NSD), we identify text-selective responses in high-quality 7T adult data (N = 8), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN) database to assess whether these patterns replicate in a large developmental sample (N = 224; age 6-20 years), and whether they relate to reading development. In both datasets, we find that VWFA-1 is primarily correlated with bilateral visual regions. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly the bilateral inferior frontal gyrus. Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a specific relationship between VWFA-2 and the frontal language network. No correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and suggest that functional connectivity patterns in the ventral temporal cortex are consistent over a wide range of reading skills.
Collapse
Affiliation(s)
- Maya Yablonski
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
| | - Iliana I. Karipidis
- Department of Psychiatry and Behavioral SciencesStanford School of MedicineStanfordCaliforniaUSA
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry Zurich, University of ZurichZürichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETHZurichSwitzerland
| | - Emily Kubota
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
5
|
Vin R, Blauch NM, Plaut DC, Behrmann M. Visual word processing engages a hierarchical, distributed, and bilateral cortical network. iScience 2024; 27:108809. [PMID: 38303718 PMCID: PMC10831251 DOI: 10.1016/j.isci.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Although the Visual Word Form Area (VWFA) in left temporal cortex is considered the pre-eminent region in visual word processing, other regions are also implicated. We examined the entire text-selective circuit, using functional MRI. Ten regions of interest (ROIs) per hemisphere were defined, which, based on clustering, grouped into early vision, high-level vision, and language clusters. We analyzed the responses of the ROIs and clusters to words, inverted words, and consonant strings using univariate, multivariate, and functional connectivity measures. Bilateral modulation by stimulus condition was evident, with a stronger effect in left hemisphere regions. Last, using graph theory, we observed that the VWFA was equivalently connected with early visual and language clusters in both hemispheres, reflecting its role as a mediator in the circuit. Although the individual ROIs and clusters bilaterally were flexibly altered by the nature of the input, stability held at the level of global circuit connectivity, reflecting the complex hierarchical distributed system serving visual text perception.
Collapse
Affiliation(s)
- Raina Vin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Nicholas M. Blauch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David C. Plaut
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
6
|
Park WJ, Fine I. A unified model for cross-modal plasticity and skill acquisition. Front Neurosci 2024; 18:1334283. [PMID: 38384481 PMCID: PMC10879418 DOI: 10.3389/fnins.2024.1334283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Historically, cross-modal plasticity following early blindness has been largely studied in the context of visual deprivation. However, more recently, there has been a shift in focus towards understanding cross-modal plasticity from the perspective of skill acquisition: the striking plasticity observed in early blind individuals reflects the extraordinary perceptual and cognitive challenges they solve. Here, inspired by two seminal papers on skill learning (the "cortical recycling" theory) and cross-modal plasticity (the "metamodal" hypothesis) respectively, we present a unified hypothesis of cortical specialization that describes how shared functional, algorithmic, and structural constraints might mediate both types of plasticity.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Psychology, University of Washington, Seattle, WA, United States
- Center for Human Neuroscience, University of Washington, Seattle, WA, United States
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, United States
- Center for Human Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Kubota E, Grill-Spector K, Nordt M. Rethinking cortical recycling in ventral temporal cortex. Trends Cogn Sci 2024; 28:8-17. [PMID: 37858388 PMCID: PMC10841108 DOI: 10.1016/j.tics.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
High-level visual areas in ventral temporal cortex (VTC) support recognition of important categories, such as faces and words. Word-selective regions are left lateralized and emerge at the onset of reading instruction. Face-selective regions are right lateralized and have been documented in infancy. Prevailing theories suggest that face-selective regions become right lateralized due to competition with word-selective regions in the left hemisphere. However, recent longitudinal studies examining face- and word-selective responses in childhood do not provide support for this theory. Instead, there is evidence that word representations recycle cortex previously involved in processing other stimuli, such as limbs. These findings call for more longitudinal investigations of cortical recycling and a new era of work that links visual experience and behavior with neural responses.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Marisa Nordt
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Juelich, Juelich, Germany
| |
Collapse
|