1
|
Ren H, Ran X, Qiu M, Lv S, Wang J, Wang C, Xu Y, Gao Z, Ren W, Zhou X, Mu J, Yu Y, Zhao Z. Abnormal nonlinear features of EEG microstate sequence in obsessive-compulsive disorder. BMC Psychiatry 2024; 24:881. [PMID: 39627734 PMCID: PMC11616381 DOI: 10.1186/s12888-024-06334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND At present, only a few studies have explored electroencephalography (EEG) microstates of patients with obsessive-compulsive disorder (OCD) and the results are inconsistent. Additionally, the nonlinear features of EEG microstate sequences contain rich information about the brain, yet how the nonlinear features of EEG microstate sequences abnormally change in patients with OCD is still unknown. METHODS Resting-state EEG data were collected from 48 OCD patients and macheted 48 healthy controls (HC). Subsequently, EEG microstate analysis was used to extract the microstate temporal parameters (duration, occurrence, coverage) and nonlinear features of EEG microstate sequences (sample entropy, Lempel-Ziv complexity, Hurst index). Finally, the temporal parameters and nonlinear features of EEG microstate sequences were sent to three kinds of machine learning models to classify OCD patients. RESULTS Both groups obtained four typical EEG microstate topographies. The duration of microstates A, B, and C in OCD patients decreased significantly, while the occurrence of microstate D increased significantly compared to HC. Sample entropy and Lempel-Ziv complexity of microstate sequences in OCD patients increased significantly, while Hurst index decreased significantly compared to HC. The classification accuracy using the nonlinear features of microstate sequences reached up to 85%, significantly higher than that based on microstate temporal parameter models. CONCLUSION This study provides supplementary findings on EEG microstates in OCD patients with a larger sample size. We found that the nonlinear features of EEG microstate sequences in OCD patients can serve as potential electrophysiological biomarkers for distinguishing OCD patients.
Collapse
Affiliation(s)
- Huicong Ren
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xiangying Ran
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Mengyue Qiu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Shiyang Lv
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junming Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Chang Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Yongtao Xu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Zhixian Gao
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Wu Ren
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Xuezhi Zhou
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junlin Mu
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yi Yu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
| | - Zongya Zhao
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China.
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, People's Republic of China.
| |
Collapse
|
2
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
3
|
Tao Q, Dang J, Guo H, Zhang M, Niu X, Kang Y, Sun J, Ma L, Wei Y, Wang W, Wen B, Cheng J, Han S, Zhang Y. Abnormalities in static and dynamic intrinsic neural activity and neurotransmitters in first-episode OCD. J Affect Disord 2024; 363:609-618. [PMID: 39029696 DOI: 10.1016/j.jad.2024.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a disabling disorder in which the temporal variability of regional brain connectivity is not well understood. The aim of this study was to investigate alterations in static and dynamic intrinsic neural activity (INA) in first-episode OCD and whether these changes have the potential to reflect neurotransmitters. METHODS A total of 95 first-episode OCD patients and 106 matched healthy controls (HCs) were included in this study. Based on resting-state functional magnetic resonance imaging (rs-fMRI), the static and dynamic local connectivity coherence (calculated by static and dynamic regional homogeneity, sReHo and dReHo) were compared between the two groups. Furthermore, correlations between abnormal INA and PET- and SPECT-derived maps were performed to examine specific neurotransmitter system changes underlying INA abnormalities in OCD. RESULTS Compared with HCs, OCD showed decreased sReHo and dReHo values in left superior, middle temporal gyrus (STG/MTG), left Heschl gyrus (HES), left putamen, left insula, bilateral paracentral lobular (PCL), right postcentral gyrus (PoCG), right precentral gyrus (PreCG), left precuneus and right supplementary motor area (SMA). Decreased dReHo values were also found in left PoCG, left PreCG, left SMA and left middle cingulate cortex (MCC). Meanwhile, alterations in INA present in brain regions were correlated with dopamine system (D2, FDOPA), norepinephrine transporter (NAT) and the vesicular acetylcholine transporter (VAChT) maps. CONCLUSION Static and dynamic INA abnormalities exist in first-episode OCD, having the potential to reveal the molecular characteristics. The results help to further understand the pathophysiological mechanism and provide alternative therapeutic targets of OCD.
Collapse
Affiliation(s)
- Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Huirong Guo
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Longyao Ma
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
4
|
Li Z, Qu Z, Yin B, Yin L, Li X. Functional connectivity key feature analysis of cognitive impairment patients based on microstate brain network. Cereb Cortex 2024; 34:bhae043. [PMID: 38383723 DOI: 10.1093/cercor/bhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Mild cognitive impairment (MCI) is the initial phase of Alzheimer's disease (AD). The cognitive decline is linked to abnormal connectivity between different regions of the brain. Most brain network studies fail to consider the changes in brain patterns and do not reflect the dynamic pathological characteristics of patients. Therefore, this paper proposes a method for constructing brain networks based on microstate sequences. It also analyzes the microstate temporal parameters and introduces a new feature, the brain homeostasis coefficient (Bhc), to quantify the stability of patient brain connections. The results showed that microstate class B parameters were higher in the MCI than in the HC group. Additionally, the Bhc values in most channels of the MCI and AD groups were lower than those of the HC group, with the most significant differences observed in the right frontal lobe. These differences were statistically significant (P < 0.05). The findings indicate that connectivity in the right frontal lobe may be most severely disrupted in patients with cognitive impairment. Furthermore, the Montreal Cognitive Assessment score showed a strong positive correlation with Bhc. This suggests that Bhc could be a novel biomarker for evaluating cognitive function in patients with cognitive impairment.
Collapse
Affiliation(s)
- Zipeng Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - Zhongjie Qu
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| | - Bowen Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P. R. China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P. R. China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, P. R. China
| |
Collapse
|
5
|
Xu Y, Han S, Wei Y, Zheng R, Cheng J, Zhang Y. Abnormal resting-state effective connectivity in large-scale networks among obsessive-compulsive disorder. Psychol Med 2024; 54:350-358. [PMID: 37310178 DOI: 10.1017/s0033291723001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective. METHODS To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected). CONCLUSIONS Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Perera MPN, Mallawaarachchi S, Bailey NW, Murphy OW, Fitzgerald PB. Obsessive-compulsive disorder (OCD) is associated with increased electroencephalographic (EEG) delta and theta oscillatory power but reduced delta connectivity. J Psychiatr Res 2023; 163:310-317. [PMID: 37245318 DOI: 10.1016/j.jpsychires.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a mental health condition causing significant decline in the quality of life of sufferers and the limited knowledge on the pathophysiology hinders successful treatment. The aim of the current study was to examine electroencephalographic (EEG) findings of OCD to broaden our understanding of the disease. Resting-state eyes-closed EEG data was recorded from 25 individuals with OCD and 27 healthy controls (HC). The 1/f arrhythmic activity was removed prior to computing oscillatory powers of all frequency bands (delta, theta, alpha, beta, gamma). Cluster-based permutation was used for between-group statistical analyses, and comparisons were performed for the 1/f slope and intercept parameters. Functional connectivity (FC) was measured using coherence and debiased weighted phase lag index (d-wPLI), and statistically analyzed using the Network Based Statistic method. Compared to HC, the OCD group showed increased oscillatory power in the delta and theta bands in the fronto-temporal and parietal brain regions. However, there were no significant between-group findings in other bands or 1/f parameters. The coherence measure showed significantly reduced FC in the delta band in OCD compared to HC but the d-wPLI analysis showed no significant differences. OCD is associated with raised oscillatory power in slow frequency bands in the fronto-temporal brain regions, which agrees with the previous literature and therefore is a potential biomarker. Although delta coherence was found to be lower in OCD, due to inconsistencies found between measures and the previous literature, further research is required to ascertain definitive conclusions.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- Central Clinical School, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| | - Sudaraka Mallawaarachchi
- Melbourne Integrative Genomics, School of Mathematics & Statistics, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Neil W Bailey
- Central Clinical School, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Oscar W Murphy
- Central Clinical School, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; Bionics Institute, East Melbourne, Victoria, 3002, Australia
| | - Paul B Fitzgerald
- Central Clinical School, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|