1
|
Liu C, Li L, Zhu D, Lin S, Ren L, Zhen W, Tan W, Wang L, Tian L, Wang Q, Mao P, Pan W, Li B, Ma X. Individualized prediction of cognitive test scores from functional brain connectome in patients with first-episode late-life depression. J Affect Disord 2024; 352:32-42. [PMID: 38360359 DOI: 10.1016/j.jad.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND In the realm of cognitive screening, the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) are widely utilized for detecting cognitive deficits in patients with late-life depression (LLD), However, the interindividual variability in neuroimaging biomarkers contributing to individual-specific symptom severity remains poorly understood. In this study, we used a connectome-based predictive model (CPM) approach on resting-state functional magnetic resonance imaging data from patients with LLD to establish individualized prediction models for the MoCA and the MMSE scores. METHODS We recruited 135 individuals diagnosed with first-episode LLD for this research. Participants underwent the MMSE and MoCA tests, along with resting-state functional magnetic resonance imaging scans. Functional connectivity matrices derived from these scans were utilized in CPM models to predict MMSE or MoCA scores. Predictive precision was assessed by correlating predicted and observed scores, with the significance of prediction performance evaluated through a permutation test. RESULTS The negative model of the CPM procedure demonstrated a significant capacity to predict MoCA scores (r = -0.309, p = 0.002). Similarly, the CPM procedure could predict MMSE scores (r = -0.236, p = 0.016). The predictive models for cognitive test scores in LLD primarily involved the visual network, somatomotor network, dorsal attention network, and ventral attention network. CONCLUSIONS Brain functional connectivity emerges as a promising predictor of personalized cognitive test scores in LLD, suggesting that functional connectomes are potential neurobiological markers for cognitive performance in patients with LLD.
Collapse
Affiliation(s)
- Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dandi Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shuo Lin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wenfeng Zhen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weihao Tan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lina Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lu Tian
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Peixian Mao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weigang Pan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Xin Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Yu F, Fang H, Zhang J, Wang Z, Ai H, Kwok VPY, Fang Y, Guo Y, Wang X, Zhu C, Luo Y, Xu P, Wang K. Individualized prediction of consummatory anhedonia from functional connectome in major depressive disorder. Depress Anxiety 2022; 39:858-869. [PMID: 36325748 DOI: 10.1002/da.23292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anhedonia is a key symptom of major depressive disorder (MDD) and other psychiatric diseases. The neural basis of anhedonia has been widely examined, yet the interindividual variability in neuroimaging biomarkers underlying individual-specific symptom severity is not well understood. METHODS To establish an individualized prediction model of anhedonia, we applied connectome-based predictive modeling (CPM) to whole-brain resting-state functional connectivity profiles of MDD patients. RESULTS The CPM can successfully and reliably predict individual consummatory but not anticipatory anhedonia. The predictive model mainly included salience network (SN), frontoparietal network (FPN), default mode network (DMN), and motor network. Importantly, subsequent computational lesion prediction and consummatory-specific model prediction revealed that connectivity of the SN with DMN and FPN is essential and specific for the prediction of consummatory anhedonia. CONCLUSIONS This study shows that brain functional connectivity, especially the connectivity of SN-FPN and SN-DMN, can specifically predict individualized consummatory anhedonia in MDD. These findings suggest the potential of functional connectomes for the diagnosis and prognosis of anhedonia in MDD and other disorders.
Collapse
Affiliation(s)
- Fengqiong Yu
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China.,Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Junfeng Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhihao Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Veronica P Y Kwok
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Ya Fang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| | - Yaru Guo
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| | - Xin Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| | - Yuejia Luo
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China.,Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| |
Collapse
|