1
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
2
|
Gutterman J, Gordon AM. Neural Correlates of Impaired Grasp Function in Children with Unilateral Spastic Cerebral Palsy. Brain Sci 2023; 13:1102. [PMID: 37509032 PMCID: PMC10377617 DOI: 10.3390/brainsci13071102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Unilateral spastic cerebral palsy (USCP) is caused by damage to the developing brain and affects motor function, mainly lateralized to one side of the body. Children with USCP have difficulties grasping objects, which can affect their ability to perform daily activities. Although cerebral palsy is typically classified according to motor function, sensory abnormalities are often present as well and may contribute to motor impairments, including grasping. In this review, we show that the integrity and connectivity pattern of the corticospinal tract (CST) is related to execution and anticipatory control of grasping. However, as this may not explain all the variance of impairments in grasping function, we also describe the potential roles of sensory and sensorimotor integration deficits that contribute to grasp impairments. We highlight studies measuring fingertip forces during object manipulation tasks, as this approach allows for the dissection of the close association of sensory and motor function and can detect the discriminant use of sensory information during a complex, functional task (i.e., grasping). In addition, we discuss the importance of examining the interactions of the sensory and motor systems together, rather than in isolation. Finally, we suggest future directions for research to understand the underlying mechanisms of grasp impairments.
Collapse
Affiliation(s)
- Jennifer Gutterman
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3
|
Wang X, Wei W, Bai Y, Shen Y, Zhang G, Ma H, Meng N, Yue X, Xie J, Zhang X, Guo Z, Wang M. Intrinsic brain activity alterations in patients with Parkinson's disease. Neurosci Lett 2023; 809:137298. [PMID: 37196973 DOI: 10.1016/j.neulet.2023.137298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The objective of this study is to explore the brain activity alterations in Parkinson's disease (PD) from the perspectives of neuronal activity, synchronization of neuronal activity, and coordination of whole-brain activity. METHODS In this study, we recruited 38 PD patients and 35 matched healthy controls (HCs). We explored intrinsic brain activity alterations in PD by comparing resting-state functional magnetic resonance imaging (rs-fMRI) metrics of the amplitude of low-frequency of fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), percent amplitude of fluctuation (PerAF), regional homogeneity (ReHo), and degree centrality (DC). Two-sample t-tests were used to determine the differences between the two groups. Spearman correlation analysis was used to explore the relationships between abnormal ALFF, fALFF, PerAF, ReHo, and DC values and clinical indicators such as the Movement Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Hoehn and Yahr (H&Y) stage, and duration of disease. RESULTS Compared with the HCs, PD had increased ALFF,fALFF, and PerAF in the temporal lobe and cerebellum, and decreased ALFF,fALFF, and PerAF in the occipital-parietal lobe in the neuronal activity. In the synchronization of neuronal activity, PD patients had increased ReHo in the right inferior parietal lobule and decreased ReHo in the caudate. In the coordination of whole-brain activity, PD patients had increased DC in the cerebellum and decreased DC in the occipital lobe. Correlation analysis showed that there is a correlation between abnormal brain regions and clinical indicators in PD. Notably, the changes in occipital lobe brain activity were found in ALFF, fALFF, PerAF, and DC, and were most correlated with the clinical indicators of PD patients. CONCLUSIONS This study found that intrinsic brain function in several occipital-temporal-parietal and cerebellum regions was altered in PD patients, potentially related to the clinical indicators of PD. These results may enhance our understanding of the underlying neural mechanisms of PD and may contribute to further exploring the selection of therapeutic targets in PD patients.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Hang Ma
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Zhiping Guo
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Health Management Center of Henan Province, People's Hospital of Zhengzhou University & FuWai Central China Cardiovascular Hospital, Zhengzhou, China.
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
4
|
Wang Z, Liu Y, Ruan X, Li Y, Li E, Zhang G, Li M, Wei X. Aberrant Amplitude of Low-Frequency Fluctuations in Different Frequency Bands in Patients With Parkinson's Disease. Front Aging Neurosci 2020; 12:576682. [PMID: 33343329 PMCID: PMC7744880 DOI: 10.3389/fnagi.2020.576682] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies reported abnormal spontaneous neural activity in Parkinson's disease (PD) patients using resting-state functional magnetic resonance imaging (R-fMRI). However, the frequency-dependent neural activity in PD is largely unknown. Here, 35 PD patients and 35 age- and education-matched healthy controls (HCs) underwent R-fMRI scanning to investigate abnormal spontaneous neural activity of PD using the amplitude of low-frequency fluctuation (ALFF) approach within the conventional band (typical band: 0.01-0.08 Hz) and specific frequency bands (slow-5: 0.010-0.027 Hz and slow-4: 0.027-0.073 Hz). Compared with HCs, PD patients exhibited increased ALFF in the parieto-temporo-occipital regions, such as the bilateral inferior temporal gyrus/fusiform gyrus (ITG/FG) and left angular gyrus/posterior middle temporal gyrus (AG/pMTG), and displayed decreased ALFF in the left cerebellum, right precuneus, and left postcentral gyrus/supramarginal gyrus (PostC/SMG) in the typical band. PD patients showed greater increased ALFF in the left caudate/putamen, left anterior cingulate cortex/medial superior frontal gyrus (ACC/mSFG), left middle cingulate cortex (MCC), right ITG, and left hippocampus, along with greater decreased ALFF in the left pallidum in the slow-5 band, whereas greater increased ALFF in the left ITG/FG/hippocampus accompanied by greater decreased ALFF in the precentral gyrus/PostC was found in the slow-4 band (uncorrected). Additionally, the left caudate/putamen was positively correlated with levodopa equivalent daily dose (LEDD), Hoehn and Yahr (HY) stage, and disease duration. Our results suggest that PD is related to widespread abnormal brain activities and that the abnormalities of ALFF in PD are associated with specific frequency bands. Future studies should take frequency band effects into account when examining spontaneous neural activity in PD.
Collapse
Affiliation(s)
- Zhaoxiu Wang
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanjun Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuting Li
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - E. Li
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqin Zhang
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
(Re)organisation of the somatosensory system after early brain lesion: A lateralization index fMRI study. Ann Phys Rehabil Med 2020; 63:416-421. [DOI: 10.1016/j.rehab.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 12/16/2022]
|
6
|
Potentials of Ultrahigh-Field MRI for the Study of Somatosensory Reorganization in Congenital Hemiplegia. Neural Plast 2018; 2018:8472807. [PMID: 30595689 PMCID: PMC6286762 DOI: 10.1155/2018/8472807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/03/2022] Open
Abstract
Reorganization of somatosensory function influences the clinical recovery of subjects with congenital unilateral brain lesions. Ultrahigh-field (UHF) functional MRI (fMRI) with the use of a 7 T magnet has the potential to contribute fundamentally to the current knowledge of such plasticity mechanisms. The purpose of this study was to obtain preliminary information on the possible advantages of the study of somatosensory reorganization at UHF fMRI. We enrolled 6 young adults (mean age 25 ± 6 years) with congenital unilateral brain lesions (4 in the left hemisphere and 2 in the right hemisphere; 4 with perilesional motor reorganization and 2 with contralesional motor reorganization) and 7 healthy age-matched controls. Nondominant hand sensory assessment included stereognosis and 2-point discrimination. Task-dependent fMRI was performed to elicit a somatosensory activation by using a safe and quantitative device developed ad hoc to deliver a reproducible gentle tactile stimulus to the distal phalanx of thumb and index fingers. Group analysis was performed in the control group. Individual analyses in the native space were performed with data of hemiplegic subjects. The gentle tactile stimulus showed great accuracy in determining somatosensory cortex activation. Single-subject gentle tactile stimulus showed an S1 activation in the postcentral gyrus and an S2 activation in the inferior parietal insular cortex. A correlation emerged between an index of S1 reorganization (distance between expected and reorganized S1) and sensory deficit (p < 0.05) in subjects with hemiplegia, with higher distance related to a more severe sensory deficit. Increase in spatial resolution at 7 T allows a better localization of reorganized tactile function validated by its correlation with clinical measures. Our results support the S1 early-determination hypothesis and support the central role of topography of reorganized S1 compared to a less relevant S1-M1 integration.
Collapse
|
7
|
Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb Cortex 2018; 28:2507-2515. [PMID: 29901788 PMCID: PMC5998947 DOI: 10.1093/cercor/bhy050] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/26/2023] Open
Abstract
In the mature mammalian brain, the primary somatosensory and motor cortices are known to be spatially organized such that neural activity relating to specific body parts can be somatopically mapped onto an anatomical "homunculus". This organization creates an internal body representation which is fundamental for precise motor control, spatial awareness and social interaction. Although it is unknown when this organization develops in humans, animal studies suggest that it may emerge even before the time of normal birth. We therefore characterized the somatotopic organization of the primary sensorimotor cortices using functional MRI and a set of custom-made robotic tools in 35 healthy preterm infants aged from 31 + 6 to 36 + 3 weeks postmenstrual age. Functional responses induced by somatosensory stimulation of the wrists, ankles, and mouth had a distinct spatial organization as seen in the characteristic mature homunculus map. In comparison to the ankle, activation related to wrist stimulation was significantly larger and more commonly involved additional areas including the supplementary motor area and ipsilateral sensorimotor cortex. These results are in keeping with early intrinsic determination of a somatotopic map within the primary sensorimotor cortices. This may explain why acquired brain injury in this region during the preterm period cannot be compensated for by cortical reorganization and therefore can lead to long-lasting motor and sensory impairment.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - J Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - A G Allievi
- Department of Bioengineering, Imperial College London, London, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| |
Collapse
|
8
|
Relationship between somatosensory deficit and brain somatosensory system after early brain lesion: A morphometric study. Eur J Paediatr Neurol 2016; 20:403-11. [PMID: 26831357 DOI: 10.1016/j.ejpn.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
Cerebral Palsy (CP) is a group of permanent motor disorders due to non-progressive damage to the developing brain. Poor tactile discrimination is common in children with unilateral CP. Previous findings suggest the crucial role of structural integrity of the primary (S1) and secondary (S2) somatosensory areas located in the ipsilesional hemisphere for somatosensory function processing. However, no focus on the relationship between structural characteristics of ipsilesional S1 and S2 and tactile discrimination function in paretic hands has been proposed. Using structural MRI and a two-point discrimination assessment (2 PD), we explore this potential link in a group of 21 children (mean age 13 years and 7 months) with unilateral CP secondary to a periventricular white matter injury (PWMI) or middle cerebral artery infarct (MCA). For our whole sample there was a significant negative correlation between the 2 PD and the gray matter volume in the ipsilesional S2 (rho = -0.50 95% confidence interval [-0.76, -0.08], one-tailed p-value = 0.0109) and in the ipsilesional S1 (rho = -0.57, 95% confidence interval [-0.81, -0.19], one-tailed p-value = 0.0032). When studying these relationships with regard to the lesion types, we found these correlations were non-significant in the patients with PWMI but stronger in patients with MCA. According to our results, the degree of sensory impairment is related to the spared gray matter volume in ipsilesional S1 and S2 and is marked after an MCA stroke. Our work contributes to a better understanding of why some patients with CP have variable somatosensory deficit following an early brain lesion.
Collapse
|
9
|
Allievi AG, Arichi T, Tusor N, Kimpton J, Arulkumaran S, Counsell SJ, Edwards AD, Burdet E. Maturation of Sensori-Motor Functional Responses in the Preterm Brain. Cereb Cortex 2015; 26:402-413. [PMID: 26491066 PMCID: PMC4677983 DOI: 10.1093/cercor/bhv203] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level–dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.
Collapse
Affiliation(s)
| | - Tomoki Arichi
- Department of Bioengineering.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Sophie Arulkumaran
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - A David Edwards
- Department of Bioengineering.,Division of Brain Sciences, Department of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | | |
Collapse
|
10
|
Fast semi-automated lesion demarcation in stroke. NEUROIMAGE-CLINICAL 2015; 9:69-74. [PMID: 26413473 PMCID: PMC4543214 DOI: 10.1016/j.nicl.2015.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022]
Abstract
Lesion–behaviour mapping analyses require the demarcation of the brain lesion on each (usually transverse) slice of the individual stroke patient's brain image. To date, this is generally thought to be most precise when done manually, which is, however, both time-consuming and potentially observer-dependent. Fully automated lesion demarcation methods have been developed to address these issues, but these are often not practicable in acute stroke research where for each patient only a single image modality is available and the available image modality differs over patients. In the current study, we evaluated a semi-automated lesion demarcation approach, the so-called Clusterize algorithm, in acute stroke patients scanned in a range of common image modalities. Our results suggest that, compared to the standard of manual lesion demarcation, the semi-automated Clusterize algorithm is capable of significantly speeding up lesion demarcation in the most commonly used image modalities, without loss of either lesion demarcation precision or lesion demarcation reproducibility. For the three investigated acute datasets (CT, DWI, T2FLAIR), containing a total of 44 patient images obtained in a regular clinical setting at patient admission, the reduction in processing time was on average 17.8 min per patient and this advantage increased with increasing lesion volume (up to 60 min per patient for the largest lesion volumes in our datasets). Additionally, our results suggest that performance of the Clusterize algorithm in a chronic dataset with 11 T1 images was comparable to its performance in the acute datasets. We thus advocate the use of the Clusterize algorithm, integrated into a simple, freely available SPM toolbox, for the precise, reliable and fast preparation of imaging data for lesion–behaviour mapping analyses. We evaluated a semi-automated lesion demarcation approach in stroke patients. We compared our approach to the gold standard of manual lesion demarcation. We investigated typically used image modalities in acute clinical settings. Precision and reliability of our approach were comparable to the gold standard. Our approach was significantly faster than the gold standard.
Collapse
|
11
|
Relation between unimanual capacities and bimanual performance in hemiplegic cerebral-palsied children: impact of synkinesis. Eur J Paediatr Neurol 2015; 19:193-201. [PMID: 25540992 DOI: 10.1016/j.ejpn.2014.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Analyze the link between unimanual capacities and bimanual performance in cerebral-palsied (CP) hemiplegic children, aged between 5 and 18 years old, studying specifically the impact of synkinesis. MATERIAL AND METHODS 71 CP hemiplegic children (35 boys and 36 girls - with average age of 8 years and 6 months; MACS levels from I to III; GMFCS from I to IV) took part in a transversal study, assessed - Melbourne Test (MUUL) for unimanual capacities, and Assisting Hand Assessment (AHA) for bimanual performance - with a specific scale to analyze synkinesis during Box and Block test for affected and healthy hands, collecting synkinesis type, duration and intensity. RESULTS There is a strong correlation between unimanual capacities (MUUL) and bimanual performance (AHA) (r = 0.871). Neither age nor gender contribute to bimanual performance (AHA). Multiple linear regression shows that MUUL contributes to bimanual performance variance (AHA) by 70%. Synkinesis is partly correlated to capacities (MUUL) and accounts for 10% of the variance of the gap between capacities and bimanual performance. CONCLUSION A high relationship between unimanual capacities and bimanual performance is confirmed by this study; some authors demonstrated impact of sensory troubles, we demonstrate that synkinesis influences the use of unimanual capacities in bimanual performance.
Collapse
|
12
|
Preusser S, Thiel SD, Rook C, Roggenhofer E, Kosatschek A, Draganski B, Blankenburg F, Driver J, Villringer A, Pleger B. The perception of touch and the ventral somatosensory pathway. ACTA ACUST UNITED AC 2014; 138:540-8. [PMID: 25541190 DOI: 10.1093/brain/awu370] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.
Collapse
Affiliation(s)
- Sven Preusser
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sabrina D Thiel
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 2 Department of Psychology, Faculty of Mathematics and Natural Sciences II, Humboldt-University, Berlin, Germany
| | - Carolin Rook
- 3 Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Elisabeth Roggenhofer
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 3 Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany 4 Laboratoire de Recherche en Neuroimagerie - LREN, Departement des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Mont Paisible 16, 1011 Lausanne, Switzerland
| | - Anna Kosatschek
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Bogdan Draganski
- 4 Laboratoire de Recherche en Neuroimagerie - LREN, Departement des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Mont Paisible 16, 1011 Lausanne, Switzerland
| | - Felix Blankenburg
- 5 Berlin School of Mind and Brain and Mind and Brain Institute, Charité and Humboldt-University Berlin, Germany 6 Department of Education and Psychology, Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| | - Jon Driver
- 7 University College London Institute of Cognitive Neuroscience, London, UK
| | - Arno Villringer
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 3 Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany 5 Berlin School of Mind and Brain and Mind and Brain Institute, Charité and Humboldt-University Berlin, Germany 8 Centre for Stroke Research Berlin, Charité, Berlin, Germany
| | - Burkhard Pleger
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 3 Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Shiran SI, Weinstein M, Sirota-Cohen C, Myers V, Ben Bashat D, Fattal-Valevski A, Green D, Schertz M. MRI-based radiologic scoring system for extent of brain injury in children with hemiplegia. AJNR Am J Neuroradiol 2014; 35:2388-96. [PMID: 24852291 PMCID: PMC7965326 DOI: 10.3174/ajnr.a3950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/30/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain MR imaging is recommended in children with cerebral palsy. Descriptions of MR imaging findings lack uniformity, due to the absence of a validated quantitative approach. We developed a quantitative scoring method for brain injury based on anatomic MR imaging and examined the reliability and validity in correlation to motor function in children with hemiplegia. MATERIALS AND METHODS Twenty-seven children with hemiplegia underwent MR imaging (T1, T2-weighted sequences, DTI) and motor assessment (Manual Ability Classification System, Gross Motor Functional Classification System, Assisting Hand Assessment, Jebsen Taylor Test of Hand Function, and Children's Hand Experience Questionnaire). A scoring system devised in our center was applied to all scans. Radiologic score covered 4 domains: number of affected lobes, volume and type of white matter injury, extent of gray matter damage, and major white matter tract injury. Inter- and intrarater reliability was evaluated and the relationship between radiologic score and motor assessments determined. RESULTS Mean total radiologic score was 11.3 ± 4.5 (range 4-18). Good inter- (ρ = 0.909, P < .001) and intrarater (ρ = 0.926, P = < .001) reliability was demonstrated. Radiologic score correlated significantly with manual ability classification systems (ρ = 0.708, P < .001), and with motor assessments (assisting hand assessment [ρ = -0.753, P < .001]; Jebsen Taylor test of hand function [ρ = 0. 766, P < .001]; children's hand experience questionnaire [ρ = -0. 716, P < .001]), as well as with DTI parameters. CONCLUSIONS We present a novel MR imaging-based scoring system that demonstrated high inter- and intrarater reliability and significant associations with manual ability classification systems and motor evaluations. This score provides a standardized radiologic assessment of brain injury extent in hemiplegic patients with predominantly unilateral injury, allowing comparison between groups, and providing an additional tool for counseling families.
Collapse
Affiliation(s)
- S I Shiran
- From the Pediatric Radiology Unit (S.I.S.)
| | - M Weinstein
- Functional Brain Center, The Wohl Institute for Advanced Imaging (M.W., V.M., D.B.B.), Tel Aviv Sourasky Medical Center, Tel Aviv, Israel Department of Psychology (M.W.), Gonda Multidisciplinary Brain Research Centre, Bar Ilan University, Ramat Gan, Israel
| | | | - V Myers
- Functional Brain Center, The Wohl Institute for Advanced Imaging (M.W., V.M., D.B.B.), Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - D Ben Bashat
- Functional Brain Center, The Wohl Institute for Advanced Imaging (M.W., V.M., D.B.B.), Tel Aviv Sourasky Medical Center, Tel Aviv, Israel Sackler Faculty of Medicine (D.B.B., A.F.-V.), Tel Aviv University, Tel Aviv, Israel Sagol School of Neuroscience (D.B.B.), Tel Aviv University, Tel Aviv, Israel
| | - A Fattal-Valevski
- Sackler Faculty of Medicine (D.B.B., A.F.-V.), Tel Aviv University, Tel Aviv, Israel Department of Child Neurology (A.F.-V., M.S.), Dana-Dwek Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - D Green
- Center for Rehabilitation (D.G.), Oxford Brookes University, Oxford, UK
| | - M Schertz
- Department of Child Neurology (A.F.-V., M.S.), Dana-Dwek Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel Pediatric Neurology and Child Development Service-Meuhedet North (M.S.), Haifa, Israel
| |
Collapse
|
14
|
Arichi T, Counsell SJ, Allievi AG, Chew AT, Martinez-Biarge M, Mondi V, Tusor N, Merchant N, Burdet E, Cowan FM, Edwards AD. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy. Neuroradiology 2014; 56:985-94. [PMID: 25119253 PMCID: PMC4210651 DOI: 10.1007/s00234-014-1412-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. METHODS Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. RESULTS Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. CONCLUSION Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy.
Collapse
Affiliation(s)
- T Arichi
- Department of Perinatal Imaging & Health, Division of Imaging Sciences & Biomedical Engineering, Kings College London, St Thomas' Hospital, 1st floor North Wing, Westminster Bridge Road, London, SE1 7EH, UK,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Juenger H, Koerte IK, Muehlmann M, Mayinger M, Mall V, Krägeloh-Mann I, Shenton ME, Berweck S, Staudt M, Heinen F. Microstructure of transcallosal motor fibers reflects type of cortical (re-)organization in congenital hemiparesis. Eur J Paediatr Neurol 2014; 18:691-7. [PMID: 24993149 DOI: 10.1016/j.ejpn.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/08/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the contralesional hemisphere. Another group of patients with early unilateral lesions shows "normal" contralateral motor projections starting in the lesioned hemisphere. AIM We investigated how these different patterns of cortical (re-)organization affect interhemispheric transcallosal connectivity in patients with congenital hemiparesis. METHOD Eight patients with ipsilateral motor projections (group IPSI) versus 7 patients with contralateral motor projections (group CONTRA) underwent magnetic resonance diffusion tensor imaging (DTI). The corpus callosum (CC) was subdivided in 5 areas (I-V) in the mid-sagittal slice and volumetric information. The following diffusion parameters were calculated: fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD). RESULTS DTI revealed significantly lower FA, increased trace and RD for group IPSI compared to group CONTRA in area III of the corpus callosum, where transcallosal motor fibers cross the CC. In the directly neighboring area IV, where transcallosal somatosensory fibers cross the CC, no differences were found for these DTI parameters between IPSI and CONTRA. Volume of callosal subsections showed significant differences for area II (connecting premotor cortices) and III, where group IPSI had lower volume. INTERPRETATION The results of this study demonstrate that the callosal microstructure in patients with congenital hemiparesis reflects the type of cortical (re-)organization. Early lesions disrupting corticospinal motor projections to the paretic hand consecutively affect the development or maintenance of transcallosal motor fibers.
Collapse
Affiliation(s)
- Hendrik Juenger
- Department of Pediatrics, Klinikum rechts der Isar, Technical University Munich, Koelner Platz 1, 80804 Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany.
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Marc Muehlmann
- Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Michael Mayinger
- Institute for Clinical Radiology, Ludwig-Maximilian-University, Munich, Germany; Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Volker Mall
- Social Pediatrics and Developmental Medicine, Klinikum rechts der Isar, Technical University Munich, Koelner Platz 1, 80804 Munich, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Radiology and Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Veterans Affairs (VA) Boston Healthcare System, Brockton, MA, USA
| | - Steffen Berweck
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Martin Staudt
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Germany; German Center for Vertigo and Balance Disorders, University of Munich, Munich, Germany
| |
Collapse
|
16
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
17
|
Juenger H, Kuhnke N, Braun C, Ummenhofer F, Wilke M, Walther M, Koerte I, Delvendahl I, Jung NH, Berweck S, Staudt M, Mall V. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev Med Child Neurol 2013; 55:941-51. [PMID: 23937719 DOI: 10.1111/dmcn.12209] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/30/2022]
Abstract
AIM Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always remains in the lesioned hemisphere. Here, we report on differences in exercise-induced neuroplasticity between individuals with such ipsilateral motor projections (ipsi) and individuals with early unilateral lesions but 'healthy' contralateral motor projections (contra). METHOD Sixteen children and young adults with congenital hemiparesis participated in the study (contralateral [Contra] group: n=7, four females, three males; age range 10-30y, median age 16y; ipsilateral [Ipsi] group: n=9, four females, five males; age range 11-31y, median age 12y; Manual Ability Classification System levels I to II in all individuals in both groups). The participants underwent a 12-day intervention of constraint-induced movement therapy (CIMT), consisting of individual training (2h/d) and group training (8h/d). Before and after CIMT, hand function was tested using the Wolf Motor Function Test (WMFT) and diverging neuroplastic effects were observed by transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). Statistical analysis of TMS data was performed using the non-parametric Wilcoxon signed-rank test for pair-wise comparison; for fMRI standard statistical parametric and non-parametric mapping (SPM5, SnPM3) procedures (first level/second level) were carried out. Statistical analyses of MEG data involved analyses of variance (ANOVA) and t-tests. RESULTS While MEG demonstrated a significant increase in S1 activation in both groups (p=0.012), TMS showed a decrease in M1 excitability in the Ipsi group (p=0.036), but an increase in M1 excitability in the Contra group (p=0.043). Similarly, fMRI showed a decrease in M1 activation in the Ipsi group, but an increase in activation in the M1-S1 region in the Contra group (for both groups p<0.001 [SnPM3] within the search volume). INTERPRETATION Different patterns of sensorimotor (re)organization in individuals with early unilateral lesions show, on a cortical level, different patterns of exercise-induced neuroplasticity. The findings help to improve the understanding of the general principles of sensorimotor learning and will help to develop more specific therapies for different pathologies in congenital hemiparesis.
Collapse
Affiliation(s)
- Hendrik Juenger
- Department of Pediatrics, Klinikum Rechts der Isar, Technical University München, München, Germany; Department of Neuropediatrics and Muscle Disorders, University Children's Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vadivelu S, Wolf VL, Bollo RJ, Wilfong A, Curry DJ. Resting-state functional MRI in pediatric epilepsy surgery. Pediatr Neurosurg 2013; 49:261-73. [PMID: 25277135 DOI: 10.1159/000363605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/14/2014] [Indexed: 11/19/2022]
Abstract
Resting-state functional MRI (rs-fMRI) identifies resting-state networks (RSN) in the human brain by analyzing the connectivity of anatomically remote neuronal populations with synchronous low-frequency fluctuation in blood oxygen level-dependent (BOLD) signal. Network analysis has informed the understanding of functional brain organization and is beginning to reveal the impact that neurological disorders such as epilepsy may have on the developing cerebral cortex. Among children undergoing epilepsy surgery, mapping the brain networks supporting language, sensorimotor and visual function is a critical part of the preoperative evaluation. However, task-based functional mapping techniques are particularly difficult in immature patients and those with severe impairment. Functional mapping of RSN is a promising tool that may help circumvent the challenges of adequate cooperation and limited abilities of developmentally disabled children to perform age-appropriate functions. We discuss the current methodology of rs-fMRI in the pediatric population, review the literature of rs-fMRI in pediatric epilepsy and present our experience of using rs-fMRI for functional network mapping in children undergoing epilepsy surgery.
Collapse
Affiliation(s)
- Sudhakar Vadivelu
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Department of Neurosurgery, Baylor College of Medicine, Houston, Tex., USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Rob Forsyth
- Institute of Neuroscience, Newcastle University and Great North Children's Hospital, Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
20
|
Physiological aging impacts the hemispheric balances of resting state primary somatosensory activities. Brain Topogr 2012; 26:186-99. [PMID: 22760422 DOI: 10.1007/s10548-012-0240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
To hone knowledge of sensorimotor cerebral organization changes with physiological aging, we focused on the primary somatosensory cortical area (S1). S1 neuronal pools (FS_S1) were identified by the functional source separation (FSS) algorithm applied to magnetoencephalographic recordings during median nerve stimulation. Age-dependence of FS_S1 was then studied at rest separately in the left and right hemispheres of 26 healthy, right-handed subjects between the ages of 24 and 95 years. The resting state FS_S1 spectral features changed with increasing age: (1) alpha activity slowed down; (2) total power increased only in the right hemisphere; (3) right>left interhemispheric asymmetry increased in the whole spectrum; (4) spectral entropy increased with age selectively in the left hemisphere. The present FSS-enriched electrophysiological procedure provided measures of resting state hand representation area sensitive to changes with age. Alterations were stronger in the right hemisphere. Relationships between resting state S1 activity and its responsiveness to external stimuli, revealed that the interhemispheric unbalances which emerged with age were conceivably due to an increased excitability within the right thalamocortical circuit impacting left versus right unbalances of spontaneous firing rates and of local inhibitory-excitatory networks.
Collapse
|