1
|
Granados Barbero R, Ghesquière P, Wouters J. Development of Atypical Reading at Ages 5 to 9 Years and Processing of Speech Envelope Modulations in the Brain. Front Comput Neurosci 2022; 16:894578. [PMID: 35782088 PMCID: PMC9248325 DOI: 10.3389/fncom.2022.894578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Different studies have suggested that during speech processing readers with dyslexia present atypical levels of neural entrainment as well as atypical functional hemispherical asymmetries in comparison with typical readers. In this study, we evaluated these differences in children and the variation with age before and after starting with formal reading instruction. Synchronized neural auditory processing activity was quantified based on auditory steady-state responses (ASSRs) from EEG recordings. The stimulation was modulated at syllabic and phonemic fluctuation rates present in speech. We measured the brain activation patterns and the hemispherical asymmetries in children at three age points (5, 7, and 9 years old). Despite the well-known heterogeneity during developmental stages, especially in children and in dyslexia, we could extract meaningful common oscillatory patterns. The analyses included (1) the estimations of source localization, (2) hemispherical preferences using a laterality index, measures of neural entrainment, (3) signal-to-noise ratios (SNRs), and (4) connectivity using phase coherence measures. In this longitudinal study, we confirmed that the existence of atypical levels of neural entrainment and connectivity already exists at pre-reading stages. Overall, these measures reflected a lower ability of the dyslectic brain to synchronize with syllabic rate stimulation. In addition, our findings reinforced the hypothesis of a later maturation of the processing of beta rhythms in dyslexia. This investigation emphasizes the importance of longitudinal studies in dyslexia, especially in children, where neural oscillatory patterns as well as differences between typical and atypical developing children can vary in the span of a year.
Collapse
Affiliation(s)
- Raúl Granados Barbero
- Research Group Experimental ORL, Department of Neurosciences, Katholieke University of Leuven, Leuven, Belgium
- *Correspondence: Raúl Granados Barbero
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Katholieke University of Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental ORL, Department of Neurosciences, Katholieke University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Bosch-Bayard J, Girini K, Biscay RJ, Valdes-Sosa P, Evans AC, Chiarenza GA. Resting EEG effective connectivity at the sources in developmental dysphonetic dyslexia. Differences with non-specific reading delay. Int J Psychophysiol 2020; 153:135-147. [DOI: 10.1016/j.ijpsycho.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
3
|
Neurobiological systems in dyslexia. Trends Neurosci Educ 2019; 14:11-24. [DOI: 10.1016/j.tine.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
|
4
|
Edwards ES, Burke K, Booth JR, McNorgan C. Dyslexia on a continuum: A complex network approach. PLoS One 2018; 13:e0208923. [PMID: 30557304 PMCID: PMC6296514 DOI: 10.1371/journal.pone.0208923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022] Open
Abstract
We investigated the efficacy of graph-theoretic metrics of task-related functional brain connectivity in predicting reading difficulty and explored the hypothesis that task conditions emphasizing audiovisual integration would be especially diagnostic of reading difficulty. An fMRI study was conducted in which 24 children (8 to 14 years old) who were previously diagnosed with dyslexia completed a rhyming judgment task under three presentation modality conditions. Regression analyses found that characteristic connectivity metrics of the reading network showed a presentation modality dependent relationship with reading difficulty: Children with more segregated reading networks and those that used fewer of the available connections were those with the least severe reading difficulty. These results are consistent with the hypothesis that a lack of coordinated processing between the neural regions involved in phonological and orthographic processing contributes towards reading difficulty.
Collapse
Affiliation(s)
- Erica S. Edwards
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kali Burke
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris McNorgan
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Dimitriadis SI, Simos PG, Fletcher JΜ, Papanicolaou AC. Aberrant resting-state functional brain networks in dyslexia: Symbolic mutual information analysis of neuromagnetic signals. Int J Psychophysiol 2018; 126:20-29. [DOI: 10.1016/j.ijpsycho.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022]
|
6
|
Žarić G, Correia JM, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Altered patterns of directed connectivity within the reading network of dyslexic children and their relation to reading dysfluency. Dev Cogn Neurosci 2017; 23:1-13. [PMID: 27919003 PMCID: PMC6987659 DOI: 10.1016/j.dcn.2016.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/26/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
Reading is a complex cognitive skill subserved by a distributed network of visual and language-related regions. Disruptions of connectivity within this network have been associated with developmental dyslexia but their relation to individual differences in the severity of reading problems remains unclear. Here we investigate whether dysfunctional connectivity scales with the level of reading dysfluency by examining EEG recordings during visual word and false font processing in 9-year-old typically reading children (TR) and two groups of dyslexic children: severely dysfluent (SDD) and moderately dysfluent (MDD) dyslexics. Results indicated weaker occipital to inferior-temporal connectivity for words in both dyslexic groups relative to TRs. Furthermore, SDDs exhibited stronger connectivity from left central to right inferior-temporal and occipital sites for words relative to TRs, and for false fonts relative to both MDDs and TRs. Importantly, reading fluency was positively related with forward and negatively with backward connectivity. Our results suggest disrupted visual processing of words in both dyslexic groups, together with a compensatory recruitment of right posterior brain regions especially in the SDDs during word and false font processing. Functional connectivity in the brain's reading network may thus depend on the level of reading dysfluency beyond group differences between dyslexic and typical readers.
Collapse
Affiliation(s)
- Gojko Žarić
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229EV Maastricht, Netherlands; Maastricht Brain Imaging Center (M-BIC), Oxfordlaan 55, 6229EV Maastricht, Netherlands.
| | - João M Correia
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229EV Maastricht, Netherlands; Maastricht Brain Imaging Center (M-BIC), Oxfordlaan 55, 6229EV Maastricht, Netherlands.
| | - Gorka Fraga González
- Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, Netherlands; Rudolf Berlin Center, Valckenierstraat 65-67, 1018 XE Amsterdam, Netherlands.
| | - Jurgen Tijms
- Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, Netherlands; IWAL Institute, Prins Hendrikkade 84, 1012 AE Amsterdam, Netherlands.
| | - Maurtis W van der Molen
- Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129B 1018WS Amsterdam, The Netherlands.
| | - Leo Blomert
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229EV Maastricht, Netherlands; Maastricht Brain Imaging Center (M-BIC), Oxfordlaan 55, 6229EV Maastricht, Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229EV Maastricht, Netherlands; Maastricht Brain Imaging Center (M-BIC), Oxfordlaan 55, 6229EV Maastricht, Netherlands.
| |
Collapse
|
7
|
Graph analysis of EEG resting state functional networks in dyslexic readers. Clin Neurophysiol 2016; 127:3165-3175. [DOI: 10.1016/j.clinph.2016.06.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/19/2022]
|
8
|
Wei J, Bai W, Liu T, Tian X. Functional connectivity changes during a working memory task in rat via NMF analysis. Front Behav Neurosci 2015; 9:2. [PMID: 25688192 PMCID: PMC4311635 DOI: 10.3389/fnbeh.2015.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/02/2015] [Indexed: 02/01/2023] Open
Abstract
Working memory (WM) is necessary in higher cognition. The brain as a complex network is formed by interconnections among neurons. Connectivity results in neural dynamics to support cognition. The first aim is to investigate connectivity dynamics in medial prefrontal cortex (mPFC) networks during WM. As brain neural activity is sparse, the second aim is to find the intrinsic connectivity property in a feature space. Using multi-channel electrode recording techniques, spikes were simultaneously obtained from mPFC of rats that performed a Y-maze WM task. Continuous time series converted from spikes were embedded in a low-dimensional space by non-negative matrix factorization (NMF). mPFC network in original space was constructed by measuring connections among neurons. And the same network in NMF space was constructed by computing connectivity values between the extracted NMF components. Causal density (Cd) and global efficiency (E) were estimated to present the network property. The results showed that Cd and E significantly peaked in the interval right before the maze choice point in correct trials. However, the increase did not emerge in error trials. Additionally, Cd and E in two spaces displayed similar trends in correct trials. The difference was that the measures in NMF space were significantly greater than those in original space. Our findings indicated that the anticipatory changes in mPFC networks may have an effect on future WM behavioral choices. Moreover, the NMF analysis achieves a better characterization for a brain network.
Collapse
Affiliation(s)
- Jing Wei
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering, Tianjin Medical University Tianjin, China ; Research Center of Basic Medicine, Tianjin Medical University Tianjin, China
| |
Collapse
|
9
|
Li H, Xue Z, Ellmore TM, Frye RE, Wong STC. Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders. Hum Brain Mapp 2014; 35:396-413. [PMID: 23008187 PMCID: PMC6869619 DOI: 10.1002/hbm.22185] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/20/2012] [Accepted: 07/30/2012] [Indexed: 11/06/2022] Open
Abstract
Neuroimaging has uncovered both long-range and short-range connectivity abnormalities in the brains of individuals with autism spectrum disorders (ASD). However, the precise connectivity abnormalities and the relationship between these abnormalities and cognition and ASD symptoms have been inconsistent across studies. Indeed, studies find both increases and decreases in connectivity, suggesting that connectivity changes in the ASD brain are not merely due to abnormalities in specific connections, but rather, due to changes in the structure of the network in which the brain areas interact (i.e., network topology). In this study, we examined the differences in the network topology between high-functioning ASD patients and age and gender matched typically developing (TD) controls. After quantitatively characterizing the whole-brain connectivity network using diffusion tensor imaging (DTI) data, we searched for brain regions with different connectivity between ASD and TD. A measure of oral language ability was then correlated with the connectivity changes to determine the functional significance of such changes. Whole-brain connectivity measures demonstrated greater local connectivity and shorter path length in ASD as compared to TD. Stronger local connectivity was found in ASD, especially in regions such as the left superior parietal lobule, the precuneus and angular gyrus, and the right supramarginal gyrus. The relationship between oral language ability and local connectivity within these regions was significantly different between ASD and TD. Stronger local connectivity was associated with better performance in ASD and poorer performance in TD. This study supports the notion that increased local connectivity is compensatory for supporting cognitive function in ASD.
Collapse
Affiliation(s)
- Hai Li
- Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas
| | | | | | | | | |
Collapse
|
10
|
Frye RE. A Lack of statistical pitfalls in the comparison of multivariate causality measures for effective causality. Comput Biol Med 2013; 43:962-5. [DOI: 10.1016/j.compbiomed.2013.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
|