1
|
Lima B, Florentino MM, Fiorani M, Soares JGM, Schmidt KE, Neuenschwander S, Baron J, Gattass R. Cortical maps as a fundamental neural substrate for visual representation. Prog Neurobiol 2023; 224:102424. [PMID: 36828036 DOI: 10.1016/j.pneurobio.2023.102424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Visual perception is the product of serial hierarchical processing, parallel processing, and remapping on a dynamic network involving several topographically organized cortical visual areas. Here, we will focus on the topographical organization of cortical areas and the different kinds of visual maps found in the primate brain. We will interpret our findings in light of a broader representational framework for perception. Based on neurophysiological data, our results do not support the notion that vision can be explained by a strict representational model, where the objective visual world is faithfully represented in our brain. On the contrary, we find strong evidence that vision is an active and constructive process from the very initial stages taking place in the eye and from the very initial stages of our development. A constructive interplay between perceptual and motor systems (e.g., during saccadic eye movements) is actively learnt from early infancy and ultimately provides our fluid stable visual perception of the world.
Collapse
Affiliation(s)
- Bruss Lima
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria M Florentino
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mario Fiorani
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Kerstin E Schmidt
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Sergio Neuenschwander
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Jerome Baron
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
2
|
Pereira SS, Botelho EP, Soares JGM, Farias MF, Gattass R. Time course of dorsolateral geniculate nucleus plasticity in adult monkeys with laser-induced retinal lesions. J Comp Neurol 2022; 530:2385-2401. [PMID: 35650108 DOI: 10.1002/cne.25337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2021] [Accepted: 04/26/2022] [Indexed: 11/06/2022]
Abstract
We studied changes in the expression of growth-associated protein 43 (GAP43), glial fibrillary acidic protein (GFAP), and calcium-binding proteins (calbindin [Cb] and parvalbumin [Pv]) in the dorsal lateral geniculate nucleus (dLGN) of four capuchin monkeys with laser-induced retinal lesions. The lesions were generated with the aid of a neodymium-YAG dual-frequency laser with shots of different intensity and at different survival time in each animal. The expression of these proteins in the layers of the dLGN was evaluated by performing histodensitometry of coronal sections throughout the nucleus. High-power laser shots administered at the border of the optic disc (OD)-injured fibers resulted in large scotomas. These lesions produced a devastating effect on fibers in this passage, resulting in large deafferentation of the dLGN. The time course of plasticity expressed in this nucleus varied with the degree of the retinal lesion. Topographically, corresponding portions of the dLGN were inferred by the extent of the ocular dominance column revealed by cytochrome oxidase histochemistry in flattened preparations of V1. In the region representing the retinal lesion, the expression of GFAP, GAP43, Pv, and Cb increased and decreased in the corresponding dLGN layers shortly after lesion induction and returned to their original values with different time courses. Synaptogenesis (indicated by GAP43 expression) appeared to be increased in all layers, while "cleansing" of the glial-damaged region (indicated by GFAP expression) was markedly greater in the parvocellular layers, followed by the magnocellular layers. Schematic drawings of optic discs laser lesions and of series of coronal sections of the dLGN, in three monkeys, depicting the areas of the nucleus deafferented by the lesions.
Collapse
Affiliation(s)
- Sandra S Pereira
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Department of Ophthalmology, School of Medicine, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Eliã P Botelho
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Juliana G M Soares
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Mariana F Farias
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Nuzzi R, Dallorto L, Vitale A. Cerebral Modifications and Visual Pathway Reorganization in Maculopathy: A Systematic Review. Front Neurosci 2020; 14:755. [PMID: 32973424 PMCID: PMC7472840 DOI: 10.3389/fnins.2020.00755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/14/2023] Open
Abstract
Background Macular degeneration (MD) is one of the most frequent causes of visual deficit, resulting in alterations affecting not only the retina but also the entire visual pathway up to the brain areas. This would seem related not just to signal deprivation but also to a compensatory neuronal reorganization, having significant implications in terms of potential rehabilitation of the patient and therapeutic perspectives. Objective This paper aimed to outline, by analyzing the existing literature, the current understanding of brain structural and functional changes detected with neuroimaging techniques in subjects affected by juvenile and age-related maculopathy. Methods Articles using various typologies of central nervous system (CNS) imaging in at least six patients affected by juvenile or age-related maculopathy were considered. A total of 142 were initially screened. Non-pertinent articles and duplicates were rejected. Finally, 19 articles, including 649 patients, were identified. Results In these sources, both structural and functional modifications were found in MD subjects' CNS. Changes in visual cortex gray matter volume were observed in both age-related MD (AMD) and juvenile MD (JMD); in particular, an involvement of not only its posterior part but also the anterior one suggests further causes besides an input-deprivation mechanism only. White matter degeneration was also found, more severe in JMD than in AMD. Moreover, functional analysis revealed differences in cortical activation patterns between MD and controls, suggesting neuronal circuit reorganization. Interestingly, attention and oculomotor training allowed better visual performances and correlated to a stronger cortical activation, even of the area normally receiving inputs from lesioned macula. Conclusion In MD, structural and functional changes in cerebral circuits and visual pathway can happen, involving both cerebral volume and activation patterns. These modifications, possibly due to neuronal plasticity (already observed and described for several brain areas), can allow patients to compensate for macular damage and gives therapeutic perspectives which could be achievable through an association between oculomotor training and biochemical stimulation of neuronal plasticity.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Laura Dallorto
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alessio Vitale
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Rapid topographic reorganization in adult human primary visual cortex (V1) during noninvasive and reversible deprivation. Proc Natl Acad Sci U S A 2020; 117:11059-11067. [PMID: 32354998 DOI: 10.1073/pnas.1921860117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye's blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change.
Collapse
|
5
|
Dan HD, Zhou FQ, Huang X, Xing YQ, Shen Y. Altered intra- and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa. Vision Res 2019; 159:68-75. [PMID: 30904614 DOI: 10.1016/j.visres.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
This study investigated changes in intra- and inter-regional functional connectivity (FC) in individuals with retinitis pigmentosa (RP) by using regional homogeneity (ReHo) and FC methods. Sixteen RP individuals and 14 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scans (fMRI). A combined ReHo and FC method was conducted to evaluate synchronization of brain activity. Compared with HCs, RP individuals had significantly lower ReHo values in the bilateral lingual gyrus/cerebellum posterior lobe (LGG/CPL). In FC analysis, the RP group showed decreased positive FC relative to the HC group, from bilateral LGG/CPL to bilateral LGG/cuneus (CUN) and to left postcentral gyrus (PosCG). In contrast, the RP group showed increased negative FC relative to the HC group, from bilateral LGG/CPL to bilateral thalamus, and decreased negative FC from bilateral LGG/CPL to right middle frontal gyrus (MFG), and to left inferior parietal lobule (IPL). Moreover, ReHo values of the bilateral LGG/CPL showed negative correlations with the duration of RP. FC values of the bilateral LGG/CPL-left IPL showed negative correlations with best-corrected visual acuity (BCVA) of the right eye and left eye in RP individuals. Our results reveal reduced synchronicity of neural activity changes in the primary visual area in RP individuals. Moreover, RP individuals showed intrinsic visual network disconnection and reorganization of the retino-thalamocortical pathway and dorsal visual stream, suggesting impaired visuospatial and stereoscopic vision.
Collapse
Affiliation(s)
- Han-Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
6
|
Farias MF, Ungerleider LG, Pereira SS, Amorim AKJ, Soares JGM, Gattass R. Time course of cytochrome oxidase blob plasticity in the primary visual cortex of adult monkeys after retinal laser lesions. J Comp Neurol 2018; 527:600-613. [PMID: 29574781 DOI: 10.1002/cne.24434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/09/2022]
Abstract
We studied the time course of changes of cytochrome oxidase (CytOx) blob spatial density and blob cross-sectional area of deprived (D) and nondeprived (ND) portions of V1 in four capuchin monkeys after massive and restricted retinal laser lesions. Laser shots at the border of the optic disc produced massive retinal lesions, while low power laser shots in the retina produced restricted retinal lesions. These massive and restricted retinal lesions were intended to simulate glaucoma and diabetic retinopathy, respectively. We used a Neodymium-YAG dual frequency laser to make the lesions. We measured Layer III blobs in CytOx-reacted tangential sections of flat-mounted preparations of V1. The plasticity of the blob system and that of the ocular dominance columns (ODC) varied with the degree of retinal lesions. We found that changes in the blob system were different from that of the ODC. Blob sizes changed drastically in the region corresponding to the retinal lesion. Blobs were larger and subjectively darker above and below the non deprived ODC than in the deprived columns. With restricted lesions, blobs corresponding to the ND columns had sizes similar to those from non-lesioned areas. In contrast, blobs corresponding to the deprived columns were smaller than those from nonlesioned areas. With massive lesions, ND blobs were larger than the deprived blobs. Plastic changes in blobs described here occur much earlier than previously described.
Collapse
Affiliation(s)
- Mariana F Farias
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sandra S Pereira
- Department of Ophthalmology, School of Medicine, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ana Karla J Amorim
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Juliana G M Soares
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Abstract
AbstractIn age-related macular degeneration (AMD), the processing of fine details in a visual scene, based on a high spatial frequency processing, is impaired, while the processing of global shapes, based on a low spatial frequency processing, is relatively well preserved. The present fMRI study aimed to investigate the residual abilities and functional brain changes of spatial frequency processing in visual scenes in AMD patients. AMD patients and normally sighted elderly participants performed a categorization task using large black and white photographs of scenes (indoors vs. outdoors) filtered in low and high spatial frequencies, and nonfiltered. The study also explored the effect of luminance contrast on the processing of high spatial frequencies. The contrast across scenes was either unmodified or equalized using a root-mean-square contrast normalization in order to increase contrast in high-pass filtered scenes. Performance was lower for high-pass filtered scenes than for low-pass and nonfiltered scenes, for both AMD patients and controls. The deficit for processing high spatial frequencies was more pronounced in AMD patients than in controls and was associated with lower activity for patients than controls not only in the occipital areas dedicated to central and peripheral visual fields but also in a distant cerebral region specialized for scene perception, the parahippocampal place area. Increasing the contrast improved the processing of high spatial frequency content and spurred activation of the occipital cortex for AMD patients. These findings may lead to new perspectives for rehabilitation procedures for AMD patients.
Collapse
|
8
|
Gannon MA, Long SM, Parks NA. Homeostatic plasticity in human extrastriate cortex following a simulated peripheral scotoma. Exp Brain Res 2017; 235:3391-3401. [PMID: 28821922 DOI: 10.1007/s00221-017-5042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Neuroimaging and patient work over the past decade have indicated that, following retinal deafferentation, the human visual cortex undergoes a large-scale and enduring reorganization of its topography such that the classical retinotopic organization of deafferented visual cortex remaps to represent non-classical regions of visual space. Such long-term visual reorganization is proposed to occur through changes in the functional balance of deafferented visual circuits that engage more lasting changes through activity-dependent neuroplasticity. Here, we investigated the short-term changes in functional balance (short-term plasticity; homeostatic plasticity) that occur within deafferented human visual cortices. We recorded electroencephalogram (EEG) while observers were conditioned for 6 s with a simulated retinal scotoma (artificial scotoma) positioned 8.0° in the periphery. Visual evoked potentials (VEPs) evoked by the onset of sinusoidal visual probes that varied in their tilt were used to examine changes in cortical excitability within and around cortical representations of the simulated scotoma. Psychophysical orientation functions obtained from discrimination of visual probe tilt were used to examine alterations in the stimulus selectivity within the scotoma representations. Consistent with a mechanism of homeostatic disinhibition, an early extrastriate component of the VEP (the early phase P1) exhibited increased amplitude following the condition with a simulated scotoma relative to a stimulus-matched control condition. This increased visual cortical response was associated with a reduction in the slope of the psychophysical orientation function, suggesting a broader tuning of neural populations within scotoma representations. Together, these findings support a mechanism of disinhibition in promoting visual plasticity and topographical reorganization.
Collapse
Affiliation(s)
- Matthew A Gannon
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA.
| | - Stephanie M Long
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Nathan A Parks
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Selective interhemispheric circuits account for a cardinal bias in spontaneous activity within early visual areas. Neuroimage 2017; 146:971-982. [DOI: 10.1016/j.neuroimage.2016.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
|
10
|
Ferreira S, Pereira AC, Quendera B, Reis A, Silva ED, Castelo-Branco M. Primary visual cortical remapping in patients with inherited peripheral retinal degeneration. NEUROIMAGE-CLINICAL 2016; 13:428-438. [PMID: 28116235 PMCID: PMC5233796 DOI: 10.1016/j.nicl.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
Human studies addressing the long-term effects of peripheral retinal degeneration on visual cortical function and structure are scarce. Here we investigated this question in patients with Retinitis Pigmentosa (RP), a genetic condition leading to peripheral visual degeneration. We acquired functional and anatomical magnetic resonance data from thirteen patients with different levels of visual loss and twenty-two healthy participants to study primary (V1) visual cortical retinotopic remapping and cortical thickness. We identified systematic visual field remapping in the absence of structural changes in the primary visual cortex of RP patients. Remapping consisted in a retinotopic eccentricity shift of central retinal inputs to more peripheral locations in V1. Importantly, this was associated with changes in visual experience, as assessed by the extent of the visual loss, with more constricted visual fields resulting in larger remapping. This pattern of remapping is consistent with expansion or shifting of neuronal receptive fields into the cortical regions with reduced retinal input. These data provide evidence for functional changes in V1 that are dependent on the magnitude of peripheral visual loss in RP, which may be explained by rapid cortical adaptation mechanisms or long-term cortical reorganization. This study highlights the importance of analyzing the retinal determinants of brain functional and structural alterations for future visual restoration approaches.
Collapse
Key Words
- FPZ, Function Projection Zone
- Functional magnetic resonance imaging (fMRI)
- Human
- LE, Left Eye
- LH, Left Hemisphere
- LPZ, Lesion Projection Zone
- MRI, Magnetic Resonance Imaging
- Plasticity
- Primary visual cortex
- RE, Right Eye
- RH, Right Hemisphere
- RNFL, Retinal Nerve Fiber Layer
- RP, Retinitis Pigmentosa
- Reorganization
- Retinitis pigmentosa
- Retinotopy
- fMRI, functional Magnetic Resonance Imaging
Collapse
Affiliation(s)
- Sónia Ferreira
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Andreia Carvalho Pereira
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Quendera
- Institute of Nuclear Sciences Applied to Health (ICNAS), Brain Imaging Network of Portugal, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Aldina Reis
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - Eduardo Duarte Silva
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), Brain Imaging Network of Portugal, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
11
|
Sammons RP, Keck T. Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol 2015; 35:136-41. [PMID: 26313527 DOI: 10.1016/j.conb.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/29/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Following loss of input due to peripheral lesions, functional reorganization occurs in the deprived cortical region in adults. Over a period of hours to months, cells in the lesion projection zone (LPZ) begin to respond to novel stimuli. This reorganization is mediated by two processes: a reduction of inhibition in a gradient throughout the cortex and input remapping via sprouting of axonal arbors from cortical regions spatially adjacent to the LPZ, and strengthening of pre-existing subthreshold inputs. Together these inputs facilitate receptive field remapping of cells in the LPZ. Recent experiments have revealed time courses and potential interactions of the mechanisms associated with functional reorganization, suggesting that large scale reorganization in the adult may utilize plasticity mechanisms prominent during development.
Collapse
Affiliation(s)
- Rosanna P Sammons
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
12
|
Azzi JCB, Gattass R, Lima B, Soares JGM, Fiorani M. Precise visuotopic organization of the blind spot representation in primate V1. J Neurophysiol 2015; 113:3588-99. [PMID: 25761953 PMCID: PMC4461883 DOI: 10.1152/jn.00418.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/06/2015] [Indexed: 11/27/2022] Open
Abstract
The optic disk is a region of the retina consisting mainly of ganglion cell axons and blood vessels, which generates a visual scotoma known as the blind spot (BS). Information present in the surroundings of the BS can be used to complete the missing information. However, the neuronal mechanisms underlying these perceptual phenomena are poorly understood. We investigate the topography of the BS representation (BSR) in cortical area V1 of the capuchin monkey, using single and multiple electrodes. Receptive fields (RFs) of neurons inside the BSR were investigated using two distinct automatic bias-free mapping methods. The first method (local mapping) consisted of randomly flashing small white squares. For the second mapping method (global mapping), we used a single long bar that moved in one of eight directions. The latter stimulus was capable of eliciting neuronal activity inside the BSR, possibly attributable to long-range surround activity taking place outside the borders of the BSR. Importantly, we found that the neuronal activity inside the BSR is organized topographically in a manner similar to that found in other portions of V1. On average, the RFs inside the BS were larger than those outside. However, no differences in orientation or direction tuning were found between the two regions. We propose that area V1 exhibits a continuous functional topographic map, which is not interrupted in the BSR, as expected by the distribution of photoreceptors in the retina. Thus V1 topography is better described as “visuotopic” rather than as a discontinuous “retinotopic” map.
Collapse
Affiliation(s)
- João C B Azzi
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Gattass
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruss Lima
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana G M Soares
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Fiorani
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Abstract
The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen after focal binocular lesions as rapid changes in receptive field (RF) of the lesion projection zone (LPZ) in the primary visual cortex (V1). To study the dynamics of the circuitry underlying these changes longitudinally, we implanted microelectrode arrays in macaque (Macaca mulatta) V1, eliminating the possibility of sampling bias, which was a concern in previous studies. With this method, we observed a rapid initial recovery in the LPZ and, during the following weeks, 63-89% of the sites in the LPZ showed recovery of visual responses with significant position tuning. The RFs shifted ∼3° away from the scotoma. In the absence of a lesion, visual stimulation surrounding an artificial scotoma did not elicit visual responses, suggesting that the postlesion RF shifts resulted from cortical reorganization. Interestingly, although both spikes and LFPs gave consistent prelesion position tuning, only spikes reflected the postlesion remapping.
Collapse
|
14
|
Gravel N, Harvey B, Nordhjem B, Haak KV, Dumoulin SO, Renken R, Curčić-Blake B, Cornelissen FW. Cortical connective field estimates from resting state fMRI activity. Front Neurosci 2014; 8:339. [PMID: 25400541 PMCID: PMC4215614 DOI: 10.3389/fnins.2014.00339] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/06/2014] [Indexed: 01/04/2023] Open
Abstract
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that—despite some variability in CF estimates between RS scans—neural properties such as CF maps and CF size can be derived from resting state data.
Collapse
Affiliation(s)
- Nicolás Gravel
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands ; Laboratorio de Circuitos Neuronales, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile ; NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Ben Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | - Barbara Nordhjem
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Serge O Dumoulin
- Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | - Remco Renken
- NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Branislava Curčić-Blake
- NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen Groningen, Netherlands ; NeuroImaging Center, University Medical Center Groningen, University of Groningen Netherlands
| |
Collapse
|
15
|
Schmid MC, Keliris GA. Filling-in versus filling-out: patterns of cortical short-term plasticity. Trends Cogn Sci 2014; 18:342-4. [PMID: 24568929 DOI: 10.1016/j.tics.2014.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/18/2022]
Abstract
Investigations of topographic cortical plasticity following peripheral nervous injury predominantly report receptive field (RF) shifts toward the intact periphery. A recent study on visual cortex plasticity following retinal lesions by Botelho et al.[1] finds RF coverage of the lesion affected space when global retinotopic mapping strategies are used.
Collapse
Affiliation(s)
- Michael C Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany.
| | - Georgios A Keliris
- Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany.
| |
Collapse
|