1
|
Jaatinen J, Väntänen J, Salmela V, Alho K. Subjectively preferred octave size is resolved at the late stages of cerebral auditory processing. Eur J Neurosci 2023; 58:3686-3704. [PMID: 37752605 DOI: 10.1111/ejn.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Human listeners prefer octave intervals slightly above the exact 2:1 frequency ratio. To study the neural underpinnings of this subjective preference, called the octave enlargement phenomenon, we compared neural responses between exact, slightly enlarged, oversized, and compressed octaves (or their multiples). The first experiment (n = 20) focused on the N1 and P2 event-related potentials (ERPs) elicited in EEG 50-250 ms after the second tone onset during passive listening of one-octave intervals. In the second experiment (n = 20) applying four-octave intervals, musician participants actively rated the different octave types as 'low', 'good' and 'high'. The preferred slightly enlarged octave was individually determined prior to the second experiment. In both experiments, N1-P2 peak-to-peak amplitudes attenuated for the exact and slightly enlarged octave intervals compared with compressed and oversized intervals, suggesting overlapping neural representations of tones an octave (or its multiples) apart. While there were no differences between the N1-P2 amplitudes to the exact and preferred enlarged octaves, ERP amplitudes differed after 500 ms from onset of the second tone of the pair. In the multivariate pattern analysis (MVPA) of the second experiment, the different octave types were distinguishable (spatial classification across electroencephalography [EEG] channels) 200 ms after second tone onset. Temporal classification within channels suggested two separate discrimination processes peaking around 300 and 700 ms. These findings appear to be related to active listening, as no multivariate results were found in the first, passive listening experiment. The present results suggest that the subjectively preferred octave size is resolved at the late stages of auditory processing.
Collapse
Affiliation(s)
- Jussi Jaatinen
- Musicology, Faculty of Arts, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Väntänen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Psychiatric Assessment and Consultation Clinic, Wellbeing services county of Pirkanmaa, Tampere, Finland
| | - Viljami Salmela
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Unimodal and Bimodal Access to Sensory Working Memories by Auditory and Visual Impulses. J Neurosci 2019; 40:671-681. [PMID: 31754009 DOI: 10.1523/jneurosci.1194-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
It is unclear to what extent sensory processing areas are involved in the maintenance of sensory information in working memory (WM). Previous studies have thus far relied on finding neural activity in the corresponding sensory cortices, neglecting potential activity-silent mechanisms, such as connectivity-dependent encoding. It has recently been found that visual stimulation during visual WM maintenance reveals WM-dependent changes through a bottom-up neural response. Here, we test whether this impulse response is uniquely visual and sensory-specific. Human participants (both sexes) completed visual and auditory WM tasks while electroencephalography was recorded. During the maintenance period, the WM network was perturbed serially with fixed and task-neutral auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented during the maintenance of a pure tone resulted in a WM-dependent neural response, providing evidence for the auditory counterpart to the visual WM findings reported previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent impulse response, implicating the visual cortex in the maintenance of auditory information, either directly or indirectly, as a pathway to the neural auditory WM representations elsewhere. In contrast, during visual WM maintenance, only the impulse response to visual stimulation was content-specific, suggesting that visual information is maintained in a sensory-specific neural network, separated from auditory processing areas.SIGNIFICANCE STATEMENT Working memory is a crucial component of intelligent, adaptive behavior. Our understanding of the neural mechanisms that support it has recently shifted: rather than being dependent on an unbroken chain of neural activity, working memory may rely on transient changes in neuronal connectivity, which can be maintained efficiently in activity-silent brain states. Previous work using a visual impulse stimulus to perturb the memory network has implicated such silent states in the retention of line orientations in visual working memory. Here, we show that auditory working memory similarly retains auditory information. We also observed a sensory-specific impulse response in visual working memory, while auditory memory responded bimodally to both visual and auditory impulses, possibly reflecting visual dominance of working memory.
Collapse
|
3
|
Teoh ES, Cappelloni MS, Lalor EC. Prosodic pitch processing is represented in delta-band EEG and is dissociable from the cortical tracking of other acoustic and phonetic features. Eur J Neurosci 2019; 50:3831-3842. [PMID: 31287601 DOI: 10.1111/ejn.14510] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023]
Abstract
Speech is central to communication among humans. Meaning is largely conveyed by the selection of linguistic units such as words, phrases and sentences. However, prosody, that is the variation of acoustic cues that tie linguistic segments together, adds another layer of meaning. There are various features underlying prosody, one of the most important being pitch and how it is modulated. Recent fMRI and ECoG studies have suggested that there are cortical regions for pitch which respond primarily to resolved harmonics and that high-gamma cortical activity encodes intonation as represented by relative pitch. Importantly, this latter result was shown to be independent of the cortical tracking of the acoustic energy of speech, a commonly used measure. Here, we investigate whether we can isolate low-frequency EEG indices of pitch processing of continuous narrative speech from those reflecting the tracking of other acoustic and phonetic features. Harmonic resolvability was found to contain unique predictive power in delta and theta phase, but it was highly correlated with the envelope and tracked even when stimuli were pitch-impoverished. As such, we are circumspect about whether its contribution is truly pitch-specific. Crucially however, we found a unique contribution of relative pitch to EEG delta-phase prediction, and this tracking was absent when subjects listened to pitch-impoverished stimuli. This finding suggests the possibility of a separate processing stream for prosody that might operate in parallel to acoustic-linguistic processing. Furthermore, it provides a novel neural index that could be useful for testing prosodic encoding in populations with speech processing deficits and for improving cognitively controlled hearing aids.
Collapse
Affiliation(s)
- Emily S Teoh
- School of Engineering, Trinity Centre for Biomedical Engineering and Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | | | - Edmund C Lalor
- School of Engineering, Trinity Centre for Biomedical Engineering and Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Regev TI, Nelken I, Deouell LY. Evidence for Linear but Not Helical Automatic Representation of Pitch in the Human Auditory System. J Cogn Neurosci 2019; 31:669-685. [DOI: 10.1162/jocn_a_01374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The perceptual organization of pitch is frequently described as helical, with a monotonic dimension of pitch height and a circular dimension of pitch chroma, accounting for the repeating structure of the octave. Although the neural representation of pitch height is widely studied, the way in which pitch chroma representation is manifested in neural activity is currently debated. We tested the automaticity of pitch chroma processing using the MMN—an ERP component indexing automatic detection of deviations from auditory regularity. Musicians trained to classify pure or complex tones across four octaves, based on chroma—C versus G (21 participants, Experiment 1) or C versus F# (27, Experiment 2). Next, they were passively exposed to MMN protocols designed to test automatic detection of height and chroma deviations. Finally, in an “attend chroma” block, participants had to detect the chroma deviants in a sequence similar to the passive MMN sequence. The chroma deviant tones were accurately detected in the training and the attend chroma parts both for pure and complex tones, with a slightly better performance for complex tones. However, in the passive blocks, a significant MMN was found only to height deviations and complex tone chroma deviations, but not to pure tone chroma deviations, even for perfect performers in the active tasks. These results indicate that, although height is represented preattentively, chroma is not. Processing the musical dimension of chroma may require higher cognitive processes, such as attention and working memory.
Collapse
|
5
|
de Boer J, Krumbholz K. Auditory Attention Causes Gain Enhancement and Frequency Sharpening at Successive Stages of Cortical Processing-Evidence from Human Electroencephalography. J Cogn Neurosci 2018; 30:785-798. [PMID: 29488851 DOI: 10.1162/jocn_a_01245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous findings have suggested that auditory attention causes not only enhancement in neural processing gain, but also sharpening in neural frequency tuning in human auditory cortex. The current study was aimed to reexamine these findings. Specifically, we aimed to investigate whether attentional gain enhancement and frequency sharpening emerge at the same or different processing levels and whether they represent independent or cooperative effects. For that, we examined the pattern of attentional modulation effects on early, sensory-driven cortical auditory-evoked potentials occurring at different latencies. Attention was manipulated using a dichotic listening task and was thus not selectively directed to specific frequency values. Possible attention-related changes in frequency tuning selectivity were measured with an adaptation paradigm. Our results show marked disparities in attention effects between the earlier N1 deflection and the subsequent P2 deflection, with the N1 showing a strong gain enhancement effect, but no sharpening, and the P2 showing clear evidence of sharpening, but no independent gain effect. They suggest that gain enhancement and frequency sharpening represent successive stages of a cooperative attentional modulation mechanism that increases the representational bandwidth of attended versus unattended sounds.
Collapse
|
6
|
Kim SG, Knösche TR. On the Perceptual Subprocess of Absolute Pitch. Front Neurosci 2017; 11:557. [PMID: 29085275 PMCID: PMC5649255 DOI: 10.3389/fnins.2017.00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022] Open
Abstract
Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.
Collapse
Affiliation(s)
- Seung-Goo Kim
- Research Group for MEG and EEG-Cortical Networks and Cognitive Functions, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas R Knösche
- Research Group for MEG and EEG-Cortical Networks and Cognitive Functions, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Foo F, King-Stephens D, Weber P, Laxer K, Parvizi J, Knight RT. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus. Front Hum Neurosci 2016; 10:154. [PMID: 27148011 PMCID: PMC4829599 DOI: 10.3389/fnhum.2016.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 11/23/2022] Open
Abstract
The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70–150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.
Collapse
Affiliation(s)
- Francine Foo
- Biophysics Graduate Group, University of CaliforniaBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center San Francisco, CA, USA
| | - Peter Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center San Francisco, CA, USA
| | - Kenneth Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center San Francisco, CA, USA
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University Stanford, CA, USA
| | - Robert T Knight
- Biophysics Graduate Group, University of CaliforniaBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA; Department of Psychology, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
8
|
Nunes-Silva M, Moura R, Lopes-Silva JB, Haase VG. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study. J Clin Exp Neuropsychol 2016; 38:630-47. [PMID: 27023492 DOI: 10.1080/13803395.2016.1144714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. METHOD This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). RESULTS Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. CONCLUSIONS The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with amusia may present a deficit in accessing nonsymbolic numerical representations from symbolic representations. The symbolic access deficit could reflect a widespread impairment in the establishment of cortico-cortical connections between association areas.
Collapse
Affiliation(s)
- Marilia Nunes-Silva
- a Developmental Neuropsychology Laboratory (LND), Department of Psychology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Programa de Pós-Graduação em Neurociências , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Ricardo Moura
- a Developmental Neuropsychology Laboratory (LND), Department of Psychology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Programa de Pós-Graduação em Neurociências , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Júlia Beatriz Lopes-Silva
- a Developmental Neuropsychology Laboratory (LND), Department of Psychology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Vitor Geraldi Haase
- a Developmental Neuropsychology Laboratory (LND), Department of Psychology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Programa de Pós-Graduação em Neurociências , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
9
|
Moerel M, De Martino F, Santoro R, Yacoub E, Formisano E. Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex. Neuroimage 2015; 106:161-9. [PMID: 25479020 PMCID: PMC4388253 DOI: 10.1016/j.neuroimage.2014.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/04/2023] Open
Abstract
Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed--with new data--our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations-but not other cortical populations-harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes.
Collapse
Affiliation(s)
- Michelle Moerel
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Federico De Martino
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, Maastricht, 6229 EV, the Netherlands
| | - Roberta Santoro
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, Maastricht, 6229 EV, the Netherlands
| | - Essa Yacoub
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elia Formisano
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, Maastricht, 6229 EV, the Netherlands
| |
Collapse
|
10
|
Bidelman GM, Grall J. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex. Neuroimage 2014; 101:204-14. [DOI: 10.1016/j.neuroimage.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/28/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022] Open
|
11
|
Human decision making based on variations in internal noise: an EEG study. PLoS One 2013; 8:e68928. [PMID: 23840904 PMCID: PMC3698081 DOI: 10.1371/journal.pone.0068928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Abstract
Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG) activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant, bottom-up and top-down influences were under experimental control. We found that early cortical responses to the identical stimuli varied in global field power and topography according to the perceptual decision made, and activity preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination judgments.
Collapse
|
12
|
Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM. Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 2013; 75:155-164. [DOI: 10.1016/j.neuroimage.2013.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022] Open
|
13
|
Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 2012; 14:83-101. [PMID: 23090057 DOI: 10.1007/s10162-012-0356-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 10/10/2012] [Indexed: 10/27/2022] Open
Abstract
Research with barn owls suggested that sound source location is represented topographically in the brain by an array of neurons each tuned to a narrow range of locations. However, research with small-headed mammals has offered an alternative view in which location is represented by the balance of activity in two opponent channels broadly tuned to the left and right auditory space. Both channels may be present in each auditory cortex, although the channel representing contralateral space may be dominant. Recent studies have suggested that opponent channel coding of space may also apply in humans, although these studies have used a restricted set of spatial cues or probed a restricted set of spatial locations, and there have been contradictory reports as to the relative dominance of the ipsilateral and contralateral channels in each cortex. The current study used electroencephalography (EEG) in conjunction with sound field stimulus presentation to address these issues and to inform the development of an explicit computational model of human sound source localization. Neural responses were compatible with the opponent channel account of sound source localization and with contralateral channel dominance in the left, but not the right, auditory cortex. A computational opponent channel model reproduced every important aspect of the EEG data and allowed inferences about the width of tuning in the spatial channels. Moreover, the model predicted the oft-reported decrease in spatial acuity measured psychophysically with increasing reference azimuth. Predictions of spatial acuity closely matched those measured psychophysically by previous authors.
Collapse
|