1
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
2
|
Abstract
A growing body of literature has explored the influence of physical activity on brain structure and function. While the mechanisms of this relationship remain largely speculative, recent research suggests that one of the effects of physical exercise is an increase in synaptic long-term potentiation (LTP). This has not yet been explored directly in humans due to the difficulty of measuring LTP non-invasively. However, we have previously established that LTP-like changes in visual-evoked potentials (VEPs) can be measured in humans. Here, we investigated whether physical fitness status affects the degree of visual sensory LTP. Using a self-report measure of physical activity, participants were split into two groups: a high-activity group, and a low-activity group. LTP was measured and compared between the two groups using the previously established electroencephalography-LTP paradigm, which assesses the degree to which the N1b component of the VEP elicited by a sine grating is potentiated (enhanced) following a rapid "tetanic" presentation of that grating. Both groups demonstrated increased negativity in the amplitude of the N1b component of the VEP immediately after presentation of the visual "tetanus," indicating potentiation. However, after a 30-min rest period, the N1b for the high-activity group remained potentiated while the N1b for the low-activity group returned to baseline. This study presents the first evidence for the impact of self-reported levels of physical activity on LTP in humans, and sheds light on potential neurological mechanisms underlying the relationship between physical fitness and cognition.
Collapse
|
3
|
Cheron G, Márquez-Ruiz J, Kishino T, Dan B. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis. Front Syst Neurosci 2014; 8:221. [PMID: 25477791 PMCID: PMC4237040 DOI: 10.3389/fnsys.2014.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 12/11/2022] Open
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3a (m-/p+) Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of AS, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD) plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type (WT) mice is missing in Ube3a (m-/p+) mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3a (m-/p+) mice. The control exerted by the cerebellum on the excitation vs. inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike-timing dependent plasticity (STDP) of the pyramidal neurons are discussed in the context of the present hypothesis.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de MonsMons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium
| | | | - Tatsuya Kishino
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki UniversityNagasaki, Japan
| | - Bernard Dan
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|