1
|
Velichkovsky BM, Osipov GS, Nosovets ZA, Velichkovsky BB. Personal Meaning and Solving Creative Tasks: Contemporary Neurocognitive Studies. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2022. [DOI: 10.3103/s0147688221050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Chen L, Rao B, Li S, Gao L, Xie Y, Dai X, Fu K, Peng XZ, Xu H. Altered Effective Connectivity Measured by Resting-State Functional Magnetic Resonance Imaging in Posterior Parietal-Frontal-Striatum Circuit in Patients With Disorder of Consciousness. Front Neurosci 2022; 15:766633. [PMID: 35153656 PMCID: PMC8830329 DOI: 10.3389/fnins.2021.766633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Disorder of consciousness (DoC) resulting from severe brain injury is characterized by cortical and subcortical dysconnectivity. However, research on seed-based effective connectivity (EC) of DoC might be questioned as to the heterogeneity of prior assumptions. Methods Functional MRI data of 16 DoC patients and 16 demographically matched healthy individuals were analyzed. Revised coma recovery scale (CRS-R) scores of patients were acquired. Seed-based d mapping permutation of subject images (SDM-PSI) of meta-analysis was performed to quantitatively synthesize results from neuroimaging studies that evaluated resting-state functional activity in DoC patients. Spectral dynamic causal modeling (spDCM) was used to assess how EC altered between brain regions in DoC patients compared to healthy individuals. Results We found increased effective connectivity in left striatum and decreased effective connectivity in bilateral precuneus (preCUN)/posterior cingulate cortex (PCC), bilateral midcingulate cortex and left middle frontal gyrus in DoC compared with the healthy controls. The resulting pattern of interaction in DoC indicated disrupted connection and disturbance of posterior parietal-frontal-striatum, and reduced self-inhibition of preCUN/PCC. The strength of self-inhibition of preCUN/PCC was negatively correlated with the total score of CRS-R. Conclusion This impaired EC in DoC may underlie disruption in the posterior parietal-frontal-striatum circuit, particularly damage to the cortico-striatal connection and possible loss of preCUN/PCC function as the main regulatory hub.
Collapse
Affiliation(s)
- Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Fu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Zhi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Haibo Xu,
| |
Collapse
|
3
|
Lian F, Northoff G. The Lost Neural Hierarchy of the Autistic Self-Locked-Out of the Mental Self and Its Default-Mode Network. Brain Sci 2021; 11:574. [PMID: 33946964 PMCID: PMC8145974 DOI: 10.3390/brainsci11050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a fundamental change in self-awareness including seemingly paradoxical features like increased ego-centeredness and weakened self-referentiality. What is the neural basis of this so-called "self-paradox"? Conducting a meta-analytic review of fMRI rest and task studies, we show that ASD exhibits consistent hypofunction in anterior and posterior midline regions of the default-mode network (DMN) in both rest and task with decreased self-non-self differentiation. Relying on a multilayered nested hierarchical model of self, as recently established (Qin et al. 2020), we propose that ASD subjects cannot access the most upper layer of their self, the DMN-based mental self-they are locked-out of their own DMN and its mental self. This, in turn, results in strong weakening of their self-referentiality with decreases in both self-awareness and self-other distinction. Moreover, this blocks the extension of non-DMN cortical and subcortical regions at the lower layers of the physical self to the DMN-based upper layer of the mental self, including self-other distinction. The ASD subjects remain stuck and restricted to their intero- and exteroceptive selves as manifested in a relative increase in ego-centeredness (as compared to self-referentiality). This amounts to what we describe as "Hierarchical Model of Autistic Self" (HAS), which, characterizing the autistic self in hierarchical and spatiotemporal terms, aligns well with and extends current theories of ASD including predictive coding and weak central coherence.
Collapse
Affiliation(s)
- Fuxin Lian
- Institute of Psychological Sciences, School of Education, Hangzhou Normal University, Hangzhou 311121, China;
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
4
|
Wei PH, Chen H, Ye Q, Zhao H, Xu Y, Bai F. Self-reference Network-Related Interactions During the Process of Cognitive Impairment in the Early Stages of Alzheimer's Disease. Front Aging Neurosci 2021; 13:666437. [PMID: 33841130 PMCID: PMC8024683 DOI: 10.3389/fnagi.2021.666437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Normal establishment of cognition occurs after forming a sensation to stimuli from internal or external cues, in which self-reference processing may be partially involved. However, self-reference processing has been less studied in the Alzheimer’s disease (AD) field within the self-reference network (SRN) and has instead been investigated within the default-mode network (DMN). Differences between these networks have been proven in the last decade, while ultra-early diagnoses have increased. Therefore, investigation of the altered pattern of SRN is significantly important, especially in the early stages of AD. Methods: A total of 65 individuals, including 43 with mild cognitive impairment (MCI) and 22 cognitively normal individuals, participated in this study. The SRN, dorsal attention network (DAN), and salience network (SN) were constructed with resting-state functional magnetic resonance imaging (fMRI), and voxel-based analysis of variance (ANOVA) was used to explore significant regions of network interactions. Finally, the correlation between the network interactions and clinical characteristics was analyzed. Results: We discovered four interactions among the three networks, with the SRN showing different distributions in the left and right hemispheres from the DAN and SN and modulated interactions between them. Group differences in the interactions that were impaired in MCI patients indicated that the degree of damage was most severe in the SRN, least severe in the SN, and intermediate in the DAN. The two SRN-related interactions showed positive effects on the executive and memory performances of MCI patients with no overlap with the clinical assessments performed in this study. Conclusion: This study is the first and primary evidence of SRN interactions related to MCI patients’ functional performance. The influence of the SRN in the ultra-early stages of AD is nonnegligible. There are still many unknowns regarding the contribution of the SRN in AD progression, and we strongly recommend future research in this area.
Collapse
Affiliation(s)
- Ping-Hsuan Wei
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
5
|
Yankouskaya A, Sui J. Self-Positivity or Self-Negativity as a Function of the Medial Prefrontal Cortex. Brain Sci 2021; 11:brainsci11020264. [PMID: 33669682 PMCID: PMC7922957 DOI: 10.3390/brainsci11020264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Self and emotions are key motivational factors of a person strivings for health and well-being. Understanding neural mechanisms supporting the relationship between these factors bear far-reaching implications for mental health disorders. Recent work indicates a substantial overlap between self-relevant and emotion information processing and has proposed the medial prefrontal cortex (MPFC) as one shared neural signature. However, the precise cognitive and neural mechanisms represented by the MPFC in investigations of self- and emotion-related processing are largely unknown. Here we examined whether the neural underpinnings of self-related processing in the MPFC link to positive or negative emotions. We collected fMRI data to test the distinct and shared neural circuits of self- and emotion-related processing while participants performed personal (self, friend, or stranger) and emotion (happy, sad, or neutral) associative matching tasks. By exploiting tight control over the factors that determine the effects of self-relevance and emotions (positive: Happy vs. neutral; negative: Sad vs. neutral), our univariate analysis revealed that the ventral part of the MPFC (vmPFC), which has established involvement in self-prioritisation effects, was not recruited in the negative emotion prioritisation effect. In contrast, there were no differences in brain activity between the effects of positive emotion- and self-prioritisation. These results were replicated by both region of interest (ROI)-based analysis in the vmPFC and the seed- to voxel functional connectivity analysis between the MPFC and the rest of the brain. The results suggest that the prioritisation effects for self and positive emotions are tightly linked together, and the MPFC plays a large role in discriminating between positive and negative emotions in relation to self-relevance.
Collapse
Affiliation(s)
- Alla Yankouskaya
- Department of Psychology, Bournemouth University, Poole BH12 5BB, UK
- Correspondence:
| | - Jie Sui
- The School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, UK;
| |
Collapse
|
6
|
Knyazev GG, Savostyanov AN, Bocharov AV, Levin EA, Rudych PD. Intrinsic Connectivity Networks in the Self- and Other-Referential Processing. Front Hum Neurosci 2020; 14:579703. [PMID: 33304255 PMCID: PMC7693553 DOI: 10.3389/fnhum.2020.579703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroimaging studies have revealed a multitude of brain regions associated with self- and other-referential processing, but the question how the distinction between self, close other, and distant other is processed in the brain still remains unanswered. The default mode network (DMN) is the primary network associated with the processing of self, whereas task-positive networks (TPN) are indispensable for the processing of external objects. We hypothesize that self- and close-other-processing would engage DMN more than TPN, whereas distant-other-processing would engage TPN to a greater extent. To test this hypothesis, we used functional magnetic resonance imaging (fMRI) functional connectivity data obtained in the course of a trait adjective judgment task while subjects evaluated themselves, the best friend, a neutral stranger, and an unpleasant person. A positive association between the degree of self-relatedness and the degree of DMN dominance was revealed in cortical midline structures (CMS) and the left lateral prefrontal cortex. Relative to TPN, DMN showed greater connectivity in me than in friend, in friend than in stranger, and in stranger than in unpleasant conditions. These results show that the less the evaluated person is perceived as self-related, the more the balance of activity in the brain shifts from the DMN to the TPN.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Alexander N Savostyanov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Joint Laboratory of Psychological Genetics at the Institute of Cytology and Genetics SB RAS, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Evgeny A Levin
- E.N. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Pavel D Rudych
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| |
Collapse
|
7
|
Zhang XW, Dai RP, Cheng GW, Zhang WH, Long Q. Altered amplitude of low-frequency fluctuations and default mode network connectivity in high myopia: a resting-state fMRI study. Int J Ophthalmol 2020; 13:1629-1636. [PMID: 33078115 DOI: 10.18240/ijo.2020.10.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
AIM To analyze changes in amplitude of low-frequency fluctuations (ALFFs) and default mode network (DMN) connectivity in the brain, using resting-state functional magnetic resonance imaging (rs-fMRI), in high myopia (HM) patients. METHODS Eleven patients with HM (HM group) and 15 age- and sex-matched non-HM controls (non-HM group) were recruited. ALFFs were calculated and compared between HM group and non-HM group. Independent component analysis (ICA) was conducted to identify DMN, and comparisons between DMNs of two groups were performed. Region-of-interest (ROI)-based analysis was performed to explore functional connectivity (FC) between DMN regions. RESULTS Significantly increased ALFFs in left inferior temporal gyrus (ITG), bilateral rectus gyrus (REC), bilateral middle temporal gyrus (MTG), left superior temporal gyrus (STG), and left angular gyrus (ANG) were detected in HM group compared with non-HM group (all P<0.01). HM group showed increased FC in the posterior cingulate gyrus (PCC)/precuneus (preCUN) and decreased FC in the left medial prefrontal cortex (mPFG) within DMN compared with non-HM group (all P<0.01). Compared with non-HM group, HM group showed higher FC between mPFG and bilateral middle frontal gyrus (MFG), ANG, and MTG (all P<0.01). In addition, HM patients showed higher FC between PCC/(preCUN) and the right cerebellum, superior frontal gyrus (SFG), left preCUN, superior frontal gyrus (SFG), and medial orbital of the superior frontal gyrus (ORB supmed; all P<0.01). CONCLUSION HM patients show different ALFFs and DMNs compared with non-HM subjects, which may imply the cognitive alterations related to HM.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Department of Radiology, Translational Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Department of Interventional Radiology, Emergency General Hospital, Beijing 100028, China
| | - Rong-Ping Dai
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Gang-Wei Cheng
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei-Hong Zhang
- Department of Radiology, Translational Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Schott BH, Wüstenberg T, Lücke E, Pohl IM, Richter A, Seidenbecher CI, Pollmann S, Kizilirmak JM, Richardson-Klavehn A. Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus. Hum Brain Mapp 2018; 40:1554-1570. [PMID: 30430687 DOI: 10.1002/hbm.24467] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of parietal cortex structures like the precuneus is commonly observed during explicit memory retrieval, but the role of parietal cortices in encoding has only recently been appreciated and is still poorly understood. Considering the importance of the precuneus in human visual attention and imagery, we aimed to assess a potential role for the precuneus in the encoding of visuospatial representations into long-term memory. We therefore investigated the acquisition of constant versus repeatedly shuffled configurations of icons on background images over five subsequent days in 32 young, healthy volunteers. Functional magnetic resonance imaging was conducted on Days 1, 2, and 5, and persistent memory traces were assessed by a delayed memory test after another 5 days. Constant compared to shuffled configurations were associated with significant improvement of position recognition from Day 1 to 5 and better delayed memory performance. Bilateral dorsal precuneus activations separated constant from shuffled configurations from Day 2 onward, and coactivation of the precuneus and hippocampus dissociated recognized and forgotten configurations, irrespective of condition. Furthermore, learning of constant configurations elicited increased functional coupling of the precuneus with dorsal and ventral visual stream structures. Our results identify the precuneus as a key brain structure in the acquisition of detailed visuospatial information by orchestrating a parieto-occipito-temporal network.
Collapse
Affiliation(s)
- Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Systems Neuroscience in Psychiatry (SNiP), Central Institute of Mental Health, Mannheim, Germany
| | - Eva Lücke
- Department of Pulmonary Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ina-Maria Pohl
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Stefan Pollmann
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
9
|
Di Plinio S, Ferri F, Marzetti L, Romani GL, Northoff G, Pizzella V. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition. Hum Brain Mapp 2018; 39:3597-3610. [PMID: 29691941 DOI: 10.1002/hbm.24197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli.
Collapse
Affiliation(s)
- Simone Di Plinio
- Department of Neuroscience Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Francesca Ferri
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Laura Marzetti
- Department of Neuroscience Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy.,Institute for Advanced Biomedical Technologies, Chieti, 66100, Italy
| | - Gian Luca Romani
- Department of Neuroscience Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy.,Institute for Advanced Biomedical Technologies, Chieti, 66100, Italy
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, K1Z 7K4, Canada.,Zhejiang University School of Medicine, Mental Health Centre, Hangzhou, China
| | - Vittorio Pizzella
- Department of Neuroscience Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy.,Institute for Advanced Biomedical Technologies, Chieti, 66100, Italy
| |
Collapse
|
10
|
Kizilirmak JM, Thuerich H, Folta-Schoofs K, Schott BH, Richardson-Klavehn A. Neural Correlates of Learning from Induced Insight: A Case for Reward-Based Episodic Encoding. Front Psychol 2016; 7:1693. [PMID: 27847490 PMCID: PMC5088210 DOI: 10.3389/fpsyg.2016.01693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/13/2016] [Indexed: 12/03/2022] Open
Abstract
Experiencing insight when solving problems can improve memory formation for both the problem and its solution. The underlying neural processes involved in this kind of learning are, however, thus far insufficiently understood. Here, we conceptualized insight as the sudden understanding of a novel relationship between known stimuli that fits into existing knowledge and is accompanied by a positive emotional response. Hence, insight is thought to comprise associative novelty, schema congruency, and intrinsic reward, all of which are separately known to enhance memory performance. We examined the neural correlates of learning from induced insight with functional magnetic resonance imaging (fMRI) using our own version of the compound-remote-associates-task (CRAT) in which each item consists of three clue words and a solution word. (Pseudo-)Solution words were presented after a brief period of problem-solving attempts to induce either sudden comprehension (CRA items) or continued incomprehension (control items) at a specific time point. By comparing processing of the solution words of CRA with control items, we found induced insight to elicit activation of the rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC) and left hippocampus. This pattern of results lends support to the role of schema congruency (rACC/mPFC) and associative novelty (hippocampus) in the processing of induced insight. We propose that (1) the mPFC not only responds to schema-congruent information, but also to the detection of novel schemata, and (2) that the hippocampus responds to a form of associative novelty that is not just a novel constellation of familiar items, but rather comprises a novel meaningful relationship between the items—which was the only difference between our insight and no insight conditions. To investigate episodic long-term memory encoding, we compared CRA items whose solution word was recognized 24 h after encoding to those with forgotten solutions. We found activation in the left striatum and parts of the left amygdala, pointing to a potential role of brain reward circuitry in the encoding of the solution words. We propose that learning from induced insight mainly relies on the amygdala evaluating the internal value (as an affective evaluation) of the suddenly comprehended information, and striatum-dependent reward-based learning.
Collapse
Affiliation(s)
- Jasmin M Kizilirmak
- Cognitive Neuroscience Lab, Institute of Psychology, University of Hildesheim Hildesheim, Germany
| | - Hannes Thuerich
- Memory and Consciousness Research Group, Department of Neurology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany
| | - Kristian Folta-Schoofs
- Cognitive Neuroscience Lab, Institute of Psychology, University of Hildesheim Hildesheim, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Department of Behavioral NeurologyMagdeburg, Germany; Department of Psychiatry, Charité University HospitalBerlin, Germany
| | - Alan Richardson-Klavehn
- Memory and Consciousness Research Group, Department of Neurology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany
| |
Collapse
|