1
|
Kucikova L, Xiong X, Reinecke P, Madden J, Jackson E, Tappin O, Huang W, Dounavi ME, Su L. The effects of APOEe4 allele on cerebral structure, function, and related interactions with cognition in young adults. Ageing Res Rev 2024; 101:102510. [PMID: 39326705 DOI: 10.1016/j.arr.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
In the last decade, extensive research has emerged into understanding the impact of risk factors for Alzheimer's Disease (AD) on brain in pre-symptomatic stages. We investigated the neuroimaging correlates of the APOEe4 genetic risk factor for AD in young adulthood, its relationship with cognition, and potential effects of other variables on the findings. While conventional volumetric analyses revealed no consistent differences, more sophisticated analyses identified subtle structural differences between APOEe4 carriers and non-carriers. Findings from diffusion studies were limited, but functional studies demonstrated consistent alterations in connectivity and activity. The complex relationship between APOE genotype, neuroimaging variables, and cognition revealed no consensus on the directionality of findings. Methodological choices, including analytical approaches, sample size, and the influence of other genes, gender, and ethnicity, varied across studies, impacting comparability and generalizability. Recommendations for future research include multimodal and longitudinal imaging, standardisation of pipelines, advanced analytical techniques, and collaborative data pooling.
Collapse
Affiliation(s)
- Ludmila Kucikova
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Xiong Xiong
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Patricia Reinecke
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica Madden
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Jackson
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Tappin
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Weijie Huang
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Li Su
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Zhao B, Li T, Smith SM, Xiong D, Wang X, Yang Y, Luo T, Zhu Z, Shan Y, Matoba N, Sun Q, Yang Y, Hauberg ME, Bendl J, Fullard JF, Roussos P, Lin W, Li Y, Stein JL, Zhu H. Common variants contribute to intrinsic human brain functional networks. Nat Genet 2022; 54:508-517. [PMID: 35393594 DOI: 10.1038/s41588-022-01039-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10-11), including associations to the central executive, default mode, and salience networks involved in the triple-network model of psychopathology. A number of brain activity-associated loci colocalized with brain disorders (e.g., the APOE ε4 locus with Alzheimer's disease). Variation in brain function was genetically correlated with brain disorders, such as major depressive disorder and schizophrenia. Together, our study provides a step forward in understanding the genetic architecture of brain functional networks and their genetic links to brain-related complex traits and disorders.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuchen Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Wang D, Hu L, Xu X, Ma X, Li Y, Liu Y, Wang Q, Zhuo C. KIBRA and APOE Gene Variants Affect Brain Functional Network Connectivity in Healthy Older People. J Gerontol A Biol Sci Med Sci 2019; 74:1725-1733. [PMID: 30715155 DOI: 10.1093/gerona/glz004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Abstract
Genetic factors play a critical role in the development of Alzheimer’s disease (AD). Kidney and brain expressed protein (KIBRA) and apolipoprotein E (APOE) are involved in episodic memory performance and AD. However, the interactions between KIBRA and APOE on brain functional network connectivity (FNC) remain unknown in healthy older people. Using independent component analysis, we systematically investigated additive and epistatic interactions of KIBRA rs1707045 and APOE on FNC in 170 healthy older Chinese people of Han ethnicity. We found significant additive KIBRA–APOE interactions on brain FNC in the right medial prefrontal cortex, the posterior cingulate cortex in the default-mode network, and the dorsal anterior cingulate cortex in the salience network. We also found significant epistatic KIBRA–APOE interactions on brain FNC in the left superior frontal gyrus and left angular gyrus in default-mode network. No significant KIBRA–APOE interactions were detected in other brain resting-state networks. These findings suggest that healthy older people have additive and epistatic interactions of KIBRA and APOE gene variants, which modulate brain FNC and may partly elucidate their association with episodic memory performance and AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Li Hu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xinghua Xu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Yi Li
- Department of Neurology, Qilu Hospital of Shangdong University, China
| | - Yong Liu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Anding Hospital, China
| |
Collapse
|
6
|
Posner MG, Upadhyay A, Ishima R, Kalli AC, Harris G, Kremerskothen J, Sansom MSP, Crennell SJ, Bagby S. Distinctive phosphoinositide- and Ca 2+-binding properties of normal and cognitive performance-linked variant forms of KIBRA C2 domain. J Biol Chem 2018; 293:9335-9344. [PMID: 29724824 PMCID: PMC6005455 DOI: 10.1074/jbc.ra118.002279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Indexed: 01/07/2023] Open
Abstract
Kidney- and brain-expressed protein (KIBRA), a multifunctional scaffold protein with around 20 known binding partners, is involved in memory and cognition, organ size control via the Hippo pathway, cell polarity, and membrane trafficking. KIBRA includes tandem N-terminal WW domains, a C2 domain, and motifs for binding atypical PKC and PDZ domains. A naturally occurring human KIBRA variant involving residue changes at positions 734 (Met-to-Ile) and 735 (Ser-to-Ala) within the C2 domain affects cognitive performance. We have elucidated 3D structures and calcium- and phosphoinositide-binding properties of human KIBRA C2 domain. Both WT and variant C2 adopt a canonical type I topology C2 domain fold. Neither Ca2+ nor any other metal ion was bound to WT or variant KIBRA C2 in crystal structures, and Ca2+ titration produced no significant reproducible changes in NMR spectra. NMR and X-ray diffraction data indicate that KIBRA C2 binds phosphoinositides via an atypical site involving β-strands 5, 2, 1, and 8. Molecular dynamics simulations indicate that KIBRA C2 interacts with membranes via primary and secondary sites on the same domain face as the experimentally identified phosphoinositide-binding site. Our results indicate that KIBRA C2 domain association with membranes is calcium-independent and involves distinctive C2 domain-membrane relative orientations.
Collapse
Affiliation(s)
- Mareike G. Posner
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Abhishek Upadhyay
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Antreas C. Kalli
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom, ,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, D-48149 Münster, Germany, and
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Susan J. Crennell
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Stefan Bagby
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom, , To whom correspondence should be addressed. Tel.:
44-1225-386436; Fax:
44-1225-386779; E-mail:
| |
Collapse
|