1
|
Melleu FF, Canteras NS. Neural Circuits of Fear and Anxiety: Insights from a Neuroethological Perspective. Physiology (Bethesda) 2025; 40:0. [PMID: 39661324 DOI: 10.1152/physiol.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
The predatory imminence continuum (PIC) of antipredator defensive behavior has been a helpful strategy for modeling anxiety and fear-related disorders in nonclinical research. The PIC is divided into three different sequential stages that reflect defensive behavioral strategy in response to predatory imminence. However, the PIC was experimentally addressed with a series of shock-based fear conditioning experiments rather than predatory threats. In this article, we consider the PIC in a more naturalistic behavioral setting, focusing on analyzing the neural systems of animals responding to terrestrial and aerial predators. Of relevance, there is a sequential engagement of the distinct neural circuits along each phase of the PIC. In the preencounter phase, prefrontal cortical networks are particularly involved in planning and organizing behavioral responses to ambiguous threats. As the predatory cues or the real predator is detected, there is an engagement of amygdalar and hippocampal > hypothalamic pathways in conjunction with the periaqueductal gray, which organize fear responses. This dynamic particularly reveals how specific neural circuits are set into action to subserve distinct defensive responses. Moreover, we further explore the neural circuits governing other fearful situations outside the context of the PIC, including agonistic social encounters and interoceptive challenges. This analysis reveals an interesting overlap between the neural systems responding to these threats and those involved in response to predatory threats. The present review clarifies how defensive circuits respond to natural threats and provides a more realistic view of the neural systems underlying anxiety and fear responses.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical SciencesUniversity of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Cuccovia V Reis FM, Novaes LS, Dos Santos NB, Ferreira-Rosa KC, Perfetto JG, Baldo MVC, Munhoz CD, Canteras NS. Predator fear memory depends on glucocorticoid receptors and protein synthesis in the basolateral amygdala and ventral hippocampus. Psychoneuroendocrinology 2022; 141:105757. [PMID: 35427951 DOI: 10.1016/j.psyneuen.2022.105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.
Collapse
Affiliation(s)
| | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Juliano Genaro Perfetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
5
|
Bindi RP, Maia RGO, Pibiri F, Baldo MVC, Poulter SL, Lever C, Canteras NS. Neural correlates of distinct levels of predatory threat in dorsal periaqueductal gray neurons. Eur J Neurosci 2022; 55:1504-1518. [PMID: 35229373 DOI: 10.1111/ejn.15633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
The dorsal PAG is an important site for integrating predatory threats. However, it remains unclear whether predator-related activation in PAG primarily reflects threat itself, and thus can distinguish between various degrees of threat, or rather reflects threat-oriented behaviors, with the PAG potentially orchestrating different types of defensive repertoire. To address this issue, we performed extracellular recording of dorsal PAG neurons in freely behaving rats and examined neuronal and behavioral responses to stimulus conditions with distinct levels of predatory threat. Animals were sequentially exposed to a non-threatening stimulus familiar environment (exposure to habituated environment) and to a novel non-threatening stimulus (i.e., a toy animal - plush) and to conditions with high (exposure to a live cat), intermediate (exposure to the environment just visited by the cat, with remnant predator scent), and low (exposure on the following day to the predatory context) levels of predatory threat. To test for contributions of both threat stimuli and behavior to changes in firing rate, we applied a Poisson Generalized Linear Model regression, using the different predator stimulus conditions and defensive repertoires as predictor variables. Analysis revealed that the different predator stimulus conditions were more predictive of changes in firing rate (primarily threat-induced increases) than the different defensive repertoires. Thus, the dorsal PAG may code for different levels of predatory threat, more than it directly orchestrates distinct threat-oriented behaviors. The present results open interesting perspectives to investigate the role of the dorsal PAG in mediating primal emotional and cognitive responses to fear-inducing stimuli.
Collapse
Affiliation(s)
- Ricardo P Bindi
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo G O Maia
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francesca Pibiri
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Marcus Vinicius C Baldo
- Dept. Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Steven L Poulter
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Colin Lever
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Newton S Canteras
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Lv Y, Chen P, Shan QH, Qin XY, Qi XH, Zhou JN. Regulation of Cued Fear Expression via Corticotropin-Releasing-Factor Neurons in the Ventral Anteromedial Thalamic Nucleus. Neurosci Bull 2020; 37:217-228. [PMID: 33052547 DOI: 10.1007/s12264-020-00592-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/15/2020] [Indexed: 11/26/2022] Open
Abstract
The ventral part of the anteromedial thalamic nucleus (AMv) is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory. Corticotropin-releasing-factor (CRF) neurons are closely associated with the regulation of stress and fear. However, few studies have focused on the role of thalamic CRF neurons in fear memory. In the present study, using a conditioned fear paradigm in CRF transgenic mice, we found that the c-Fos protein in the AMv CRF neurons was significantly increased after cued fear expression. Chemogenetic activation of AMv CRF neurons enhanced cued fear expression, whereas inhibition had the opposite effect on the cued fear response. Moreover, chemogenetic manipulation of AMv CRF neurons did not affect fear acquisition or contextual fear expression. In addition, anterograde tracing of projections revealed that AMv CRF neurons project to wide areas of the cerebral cortex and the limbic system. These results uncover a critical role of AMv CRF neurons in the regulation of conditioned fear memory.
Collapse
Affiliation(s)
- Yin Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China.
| | - Qing-Hong Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Xin-Ya Qin
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Xiu-Hong Qi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, 230027, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
7
|
Takehara‐Nishiuchi K. Neurobiology of systems memory consolidation. Eur J Neurosci 2020; 54:6850-6863. [DOI: 10.1111/ejn.14694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Kaori Takehara‐Nishiuchi
- Department of Psychology University of Toronto Toronto ON Canada
- Department of Cell and Systems Biology University of Toronto Toronto ON Canada
- Neuroscience Program University of Toronto Toronto ON Canada
| |
Collapse
|
8
|
Azevedo H, Ferreira M, Mascarello A, Osten P, Werneck Guimarães CR. The serotonergic and alpha-1 adrenergic receptor modulator ACH-000029 ameliorates anxiety-like behavior in a post-traumatic stress disorder model. Neuropharmacology 2019; 164:107912. [PMID: 31843397 DOI: 10.1016/j.neuropharm.2019.107912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a severe chronic mental illness that develops in individuals exposed to life-threatening trauma and is characterized by hyperarousal, flashbacks and nightmares. The serotonergic (5-HT) and noradrenergic (NE) systems are deeply involved in the pathogenesis of PTSD. We have previously reported a novel anxiolytic compound, ACH-000029, that modulates 5-HT and α1-adrenergic receptors and induces acute anxiolytic-like effects in rodents. Here, we investigated the potential of ACH-000029 to prevent anxiety-like behavior in the single prolonged stress (SPS) PTSD model. Mice were subjected to the SPS procedure, followed by a 7-day treatment with ACH-000029 and, for comparison, with the α1-adrenergic antagonist prazosin. Animals were behaviorally assessed using social interaction, elevated plus maze and open field tests. Interestingly, treatment with ACH-000029 but not with prazosin ameliorated the SPS-induced sociability impairment and anxiety-like behavior. The brain-wide c-fos mapping, used as a surrogate for brain activity, indicated the brain structures that were altered by SPS and putatively involved in the anxiolytic-like effect of ACH-000029. The SPS protocol produced long-lasting impairment of regions involved in stress-anxiety response, such as the amygdala, prefrontal cortex, globus pallidus and superior colliculus. ACH-000029 treatment reversed the SPS-induced c-fos changes in the globus pallidus, lateral septum and entorhinal cortex and exclusively modulated c-fos levels in subregions from the retrosplenial cortex, cerebellum, superior colliculus and ventromedial hypothalamus. These results support the hypothesis that the dual regulation of 5-HT and α1-adrenergic receptors is required to alleviate PTSD symptoms and suggest a possible role of ACH-000029 as a PTSD treatment.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil.
| | - Marcos Ferreira
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil
| | | | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, USA; Certerra, Inc., Cold Spring Harbor, NY, USA
| | | |
Collapse
|
9
|
The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator. Brain Struct Funct 2019; 224:1537-1551. [DOI: 10.1007/s00429-019-01852-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
10
|
Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology (Berl) 2019; 236:1771-1782. [PMID: 30656366 PMCID: PMC6602997 DOI: 10.1007/s00213-018-5162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 μg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Helen J. Cassaday
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|