1
|
Liu WS, Zhang YR, Ge YJ, Wang HF, Cheng W, Yu JT. Inflammation and Brain Structure in Alzheimer's Disease and Other Neurodegenerative Disorders: a Mendelian Randomization Study. Mol Neurobiol 2024; 61:1593-1604. [PMID: 37736795 DOI: 10.1007/s12035-023-03648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Previous in vitro and post-mortem studies have reported the role of inflammation in neurodegenerative disorders. However, the association between inflammation and brain structure in vivo and the transcriptome-driven functional basis with relevance to neurodegenerative disorders remains elusive. The aim of the present study is to identify the association among inflammation, brain structure, and neurodegenerative disorders at genetic and transcriptomic levels. Genetic variants associated with inflammatory cytokines were selected from the latest and largest genome-wide association studies of European ancestry. Neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and dementia with Lewy bodies (DLB) and brain structure imaging measures were selected as the outcomes. Two-sample Mendelian randomization analyses were conducted to identify the causal associations. Single-nucleus transcriptome data of the occipitotemporal cortex was further analyzed to identify the differential expressed genes in AD, which were tested for biological processes and protein interaction network. MR analysis indicated that genetically predicted TREM2 and sTREM2 were significantly associated with AD (TREM2: z-score = -9.088, p-value = 1.02 × 10-19; sTREM2: z-score = -7.495, p-value = 6.61 × 10-14). The present study found no evidence to support the causal associations between other inflammatory cytokines and the risks of AD, PD, ALS, or DLB. Genetically predicted TREM2 was significantly associated with the cortical thickness of inferior temporal (z-score = -4.238, p-value = 2.26 × 10-5) and pole temporal (z-score = -4.549, p-value = 5.40 × 10-6). In the occipitotemporal cortex samples, microglia were the main source of TREM2 gene and showed increasing expression of genes associated with inflammation and immunity. The present study has leveraged genetic and transcriptomic data to identify the association among TREM2, temporal lobe, and AD and the underlying cellular and molecular basis, thus providing a new perspective on the role of TREM2 in AD and insights into the complex associations among inflammation, brain structure, and neurodegenerative disorders, particularly AD.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ruhnau J, Müller J, Nowak S, Strack S, Sperlich D, Pohl A, Dilz J, Saar A, Veser Y, Behr F, Rehberg S, Usichenko T, Hahnenkamp K, Ehler J, Flöel A, Schroeder HWS, Müller JU, Fleischmann R, Vogelgesang A. Serum Biomarkers of a Pro-Neuroinflammatory State May Define the Pre-Operative Risk for Postoperative Delirium in Spine Surgery. Int J Mol Sci 2023; 24:10335. [PMID: 37373482 DOI: 10.3390/ijms241210335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in spine surgery enable technically safe interventions in older patients with disabling spine disease, yet postoperative delirium (POD) poses a serious risk for postoperative recovery. This study investigates biomarkers of pro-neuroinflammatory states that may help objectively define the pre-operative risk for POD. This study enrolled patients aged ≥60 scheduled for elective spine surgery under general anesthesia. Biomarkers for a pro-neuroinflammatory state included S100 calcium-binding protein β (S100β), brain-derived neurotrophic factor (BDNF), Gasdermin D, and the soluble ectodomain of the triggering receptor expressed on myeloid cells 2 (sTREM2). Postoperative changes of Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and C-reactive protein (CRP) were assessed as markers of systemic inflammation preoperatively, intraoperatively, and early postoperatively (up to 48 h). Patients with POD (n = 19, 75.7 ± 5.8 years) had higher pre-operative levels of sTREM2 (128.2 ± 69.4 pg/mL vs. 97.2 ± 52.0 pg/mL, p = 0.049) and Gasdermin D (2.9 ± 1.6 pg/mL vs. 2.1 ± 1.4 pg/mL, p = 0.29) than those without POD (n = 25, 75.6 ± 5.1 years). STREM2 was additionally a predictor for POD (OR = 1.01/(pg/mL) [1.00-1.03], p = 0.05), moderated by IL-6 (Wald-χ2 = 4.06, p = 0.04). Patients with POD additionally showed a significant increase in IL-6, IL-1β, and S100β levels on the first postoperative day. This study identified higher levels of sTREM2 and Gasdermin D as potential markers of a pro-neuroinflammatory state that predisposes to the development of POD. Future studies should confirm these results in a larger cohort and determine their potential as an objective biomarker to inform delirium prevention strategies.
Collapse
Affiliation(s)
- Johanna Ruhnau
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jonas Müller
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Nowak
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Sarah Strack
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Denise Sperlich
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anna Pohl
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jasmin Dilz
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Angelika Saar
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Yannick Veser
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Frederik Behr
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Sebastian Rehberg
- Department of Anesthesiology, Evangelisches Klinikum Bethel, 33617 Bielefeld, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Klaus Hahnenkamp
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, 07743 Jena, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
- Center for Neurodegenerative Diseases Rostock/Greifswald, 18147 Rostock, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jan-Uwe Müller
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
3
|
Soluble TREM2 in body fluid in Alzheimer's disease and Parkinson's disease. Neurol Sci 2023:10.1007/s10072-023-06729-5. [PMID: 36913148 DOI: 10.1007/s10072-023-06729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Previous studies showed conflicting results regarding soluble triggering receptor expressed on myeloid cells 2 (sTREM2) level alteration in body fluid in Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS We applied the STATA 12.0 software to compute standard mean difference (SMD) and 95% confidence interval (CI). RESULTS The study showed elevated sTREM2 level in cerebrospinal fluid (CSF) in AD, mild cognitive impairment (MCI), and preclinical AD (pre-AD) patients, compared to healthy controls (HCs) with random effects models (AD: SMD 0.28, 95% CI 0.12 to 0.44, I2 = 77.6%, p < 0.001; MCI: SMD 0.29, 95% CI 0.09 to 0.48, I2 = 89.7%, p < 0.001; pre-AD: SMD 0.24, 95% CI 0.00 to 0.48, I2 = 80.8%, p < 0.001). The study showed no significant difference in sTREM2 level in plasma between AD patients and HCs with a random effects model (SMD 0.06, 95% CI - 0.16 to 0.28, I2 = 65.6%, p = 0.008). The study showed no significant difference in sTREM2 level in CSF or plasma between PD patients and HCs with random effects models (CSF: SMD 0.33, 95% CI - 0.02 to 0.67, I2 = 85.6%, p < 0.001; plasma: SMD 0.37, 95% CI - 0.17 to 0.92, I2 = 77.8%, p = 0.011). CONCLUSIONS In conclusion, the study highlighted the CSF sTREM2 as a promising biomarker in the different clinical stages of AD. More studies were essential to explore the CSF and plasmatic concentrations of sTREM2 alteration in PD.
Collapse
|
4
|
Orhun G, Esen F, Yilmaz V, Ulusoy C, Şanlı E, Yıldırım E, Gürvit H, Ergin Özcan P, Sencer S, Bebek N, Tüzün E. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. Int J Neurosci 2023; 133:327-333. [PMID: 33851572 DOI: 10.1080/00207454.2021.1916489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis that may lead to cognitive decline. Our aim was to investigate whether the neurofilament light chain (NFL) and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) could be utilized as prognostic biomarkers in SAE. MATERIALS AND METHODS In this prospective observational study, baseline serum levels of sTREM2 and cerebrospinal fluid (CSF) levels of sTREM2 and NFL were measured by ELISA in 11 SAE patients and controls. Patients underwent daily neurological examination. Brain magnetic resonance imaging (MRI) and standard electroencephalography (EEG) were performed. Cognitive dysfunction was longitudinally assessed after discharge in 4 SAE patients using the Mini-Mental State Examination (MMSE) and Addenbrooke's Cognitive Examination-Revised (ACE-R) tests. RESULTS SAE patients showed higher CSF sTREM2 and NFL levels than controls. sTREM2 and NFL levels were not correlated with the severity measures of sepsis. Three months after discharge, 2 SAE patients displayed ACE-R scores congruent with mild cognitive impairment (MCI), persisting in one patient 12 months after discharge. SAE patients with MCI showed higher CSF NFL levels, bacteremia, and abnormal brain MRI. Patients with increased serum/CSF sTREM2 levels showed trends towards displaying poorer attention/orientation and visuo-spatial skills. CONCLUSIONS sTREM2 and NFL levels may serve as a prognostic biomarker for cognitive decline in SAE. These results lend further support for the involvement of glial activation and neuroaxonal degeneration in the physiopathology of SAE.
Collapse
Affiliation(s)
- Günseli Orhun
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Figen Esen
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Yıldırım
- Department of Psychology, Faculty of Arts and Sciences, Isik University, Istanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Perihan Ergin Özcan
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Serra Sencer
- Department of Neuroradiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Salvadó G, Milà-Alomà M, Shekari M, Ashton NJ, Operto G, Falcon C, Cacciaglia R, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Benedet AL, Kollmorgen G, Suridjan I, Wild N, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Gispert JD. Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum. Eur J Nucl Med Mol Imaging 2022; 49:4567-4579. [PMID: 35849149 DOI: 10.1007/s00259-022-05897-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-β (Aβ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aβ and tau status (AT stages). RESULTS Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aβ pathology but became negative in Aβ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, King's College London, Maurice Wohl Clinical Neuroscience Institute, Psychology & Neuroscience, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | | | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Zetterberg
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.
| | | |
Collapse
|
6
|
Leng F, Zhan Z, Sun Y, Liu F, Edison P, Sun Y, Wang Z. Cerebrospinal Fluid sTREM2 Has Paradoxical Association with Brain Structural Damage Rate in Early- and Late-Stage Alzheimer’s Disease. J Alzheimers Dis 2022; 88:117-126. [PMID: 35491791 DOI: 10.3233/jad-220102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Recently it has been proposed that microglial response has a stage-dependent effect on the progression of Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) sTREM2 has emerged as a promising microglial activation marker. Objective: To test the stage-dependent role of microglia by studying the association between baseline sTREM2 and dynamic brain structural changes in AD and mild cognitive impairment (MCI) patients. Methods: 22 amyloid-β-positive (A+) and tau-positive (T+) AD and 24 A+T+MCI patients were identified from the Alzheimer’s Disease Neuroimaging Initiative. The patients had baseline CSF amyloid-β, phosphorylated-tau, and sTREM2, and were followed up for at least one year by T1-weighted and diffusion tensor imaging scans. Gray matter volumes and white matter microstructural integrity were evaluated. Linear mixed models were applied to analyze how baseline sTREM2 may influence the rate of brain structural changes while adjusting for the effects of age, APOE4 status, and the CSF core markers. Results: In A+T+AD patients, baseline CSF sTREM2 was associated with faster mean diffusivity increase in the bilateral posterior corona radiata and right superior longitudinal fasciculus. In A+T+MCI patients, baseline CSF sTREM2 was associated slower gray matter volumetric loss in parahippocampal gyrus, left fusiform cortex, left middle temporal gyrus, and left lateral occipital cortex. Baseline CSF sTREM2 also had a protective effect against mean diffusivity increase in right inferior fronto-occipital fasciculus, left superior longitudinal fasciculus, left forceps minor, and left uncinate fasciculus. Conclusion: Microglial activation at early stage might have a protective effect against neurodegeneration, while at late stage it might facilitate AD. Future efforts on modulating microglial activation could be promising, given a carefully selected time window for intervention.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhenying Zhan
- Department of Neurology, Pujiang Branch, The First Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
| | - Fang Liu
- Department of Neurology, Tsinghua University First Hospital, Tsinghua University, Beijing, China
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | | |
Collapse
|
7
|
Jonas LA, Jain T, Li YM. Functional insight into LOAD-associated microglial response genes. Open Biol 2022; 12:210280. [PMID: 35078351 PMCID: PMC8790339 DOI: 10.1098/rsob.210280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal and synaptic loss and inflammation of the central nervous system (CNS). The majority of AD research has been dedicated to the understanding of two major AD hallmarks (i.e. Aβ and NFTs); however, recent genome-wide association studies (GWAS) data indicate neuroinflammation as having a critical role in late-onset AD (LOAD) development, thus unveiling a novel avenue for AD therapeutics. Recent evidence has provided much support to the innate immune system's involvement with AD progression; however, much remains to be uncovered regarding the role of glial cells, specifically microglia, in AD. Moreover, numerous variants in immune and/or microglia-related genes have been identified in whole-genome sequencing and GWAS analyses, including such genes as TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, CLU, CR1, INPP5D, PICALM and PLCG2. In this review, we aim to provide an insight into the function of the major LOAD-associated microglia response genes.
Collapse
Affiliation(s)
- Lauren A. Jonas
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya Jain
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Zhang PF, Hu H, Tan L, Yu JT. Microglia Biomarkers in Alzheimer's Disease. Mol Neurobiol 2021; 58:3388-3404. [PMID: 33713018 DOI: 10.1007/s12035-021-02348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Early detection and clinical diagnosis of Alzheimer's disease (AD) have become an extremely important link in the prevention and treatment of AD. Because of the occult onset, the diagnosis and treatment of AD based on clinical symptoms are increasingly challenged by current severe situations. Therefore, molecular diagnosis models based on early AD pathological markers have received more attention. Among the possible pathological mechanisms, microglia which are necessary for normal brain function are highly expected and have been continuously studied in various models. Several AD biomarkers already exist, but currently there is a paucity of specific and sensitive microglia biomarkers which can accurately measure preclinical AD. Bringing microglia biomarkers into the molecular diagnostic system which is based on fluid and neuroimaging will play an important role in future scientific research and clinical practice. Furthermore, developing novel, more specific, and sensitive microglia biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial microglial functions in response to AD pathology. This review discusses microglia biomarkers in the context of AD.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
The relationship of soluble TREM2 to other biomarkers of sporadic Alzheimer's disease. Sci Rep 2021; 11:13050. [PMID: 34158530 PMCID: PMC8219697 DOI: 10.1038/s41598-021-92101-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Microglial activation is a central player in the pathophysiology of Alzheimer’s disease (AD). The soluble fragment of triggering receptor expressed on myeloid cells 2 (sTREM2) can serve as a marker for microglial activation and has been shown to be overexpressed in AD. However, the relationship of sTREM2 with other AD biomarkers has not been extensively studied. We investigated the relationship between cerebrospinal fluid (CSF) sTREM2 and other AD biomarkers and examined the correlation of plasma sTREM2 with CSF sTREM2 in a cohort of individuals with AD and without AD. Participants were consecutively recruited from Asan Medical Center from 2018 to 2020. Subjects were stratified by their amyloid positivity and clinical status. Along with other AD biomarkers, sTREM2 level was measured in the plasma as well as CSF. In 101 patients with either amyloid-positive or negative status, CSF sTREM2 was closely associated with CSF T-tau and P-tau and not with Abeta42. CSF sTREM2 levels were found to be strongly correlated with CSF neurofilament light chain. The comparison of CSF and plasma sTREM2 levels tended to have an inverse correlation. Plasma sTREM2 and P-tau levels were oppositely influenced by age. Our results suggest that neuroinflammation may be closely associated with tau-induced neurodegeneration.
Collapse
|
10
|
TREM2, microglia, and Alzheimer's disease. Mech Ageing Dev 2021; 195:111438. [PMID: 33516818 DOI: 10.1016/j.mad.2021.111438] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) has been suggested to play a crucial role in Alzheimer's disease (AD) pathogenesis, as revealed by genome-wide association studies (GWAS). Since then, rapidly increasing literature related to TREM2 has focused on elucidating its role in AD pathology. In this review, we summarize our understanding of TREM2 biology, explore TREM2 functions in microglia, address the multiple mechanisms of TREM2 in AD, and raise key questions for further investigations to elucidate the detailed roles and molecular mechanisms of TREM2 in microglial responses. A major breakthrough in our understanding of TREM2 is based on our hypothesis suggesting that TREM2 may act as a multifaceted player in microglial functions in AD brain homeostasis. We conclude that TREM2 can not only influence microglial functions in amyloid and tau pathologies but also participate in inflammatory responses and metabolism, acting alone or with other molecules, such as apolipoprotein E (APOE). This review provides novel insight into the broad role of TREM2 in microglial function in AD and enables us to develop new strategies aimed at the immune system to treat AD pathogenesis.
Collapse
|
11
|
Edwin TH, Henjum K, Nilsson LN, Watne LO, Persson K, Eldholm RS, Saltvedt I, Halaas NB, Selbæk G, Engedal K, Strand BH, Knapskog A. A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12128. [PMID: 33313376 PMCID: PMC7720866 DOI: 10.1002/dad2.12128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The progression rate of Alzheimer's disease (AD) varies and might be affected by the triggering receptor expressed on myeloid cells (TREM2) activity. We explored if cerebrospinal fluid (CSF) soluble TREM2 (sTREM2), a proxy of microglial activity, is associated with clinical progression rate. METHODS Patients with clinical AD (N = 231) were followed for up to 3 years after diagnosis. Cognitively healthy controls (N = 42) were followed for 5 years. CSF sTREM2 was analyzed by enzyme-linked immunosorbent assay. Group-based trajectory modeling revealed distinct clinical progression groups. RESULTS Higher CSF sTREM2 was associated with slow clinical progression. The slow- and medium-progressing groups had higher CSF sTREM2 than the cognitively healthy, who had a similar level to patients with rapid clinical progression. DISCUSSION CSF sTREM2 levels were associated with clinical progression in AD, regardless of core biomarkers. This could be useful in assessing disease development in relation to patient care and clinical trial recruitment.
Collapse
Affiliation(s)
- Trine Holt Edwin
- Department of Dementia ResearchNorwegian National Advisory Unit on Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Department of Geriatric MedicineOslo University HospitalOsloNorway
- Institute of Clinical Medicine and Institute of Health and SocietyFaculty of MedicineUniversity of OsloOsloNorway
| | - Kristi Henjum
- Department of Geriatric MedicineOslo University HospitalOsloNorway
- Department of PharmacologyUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of Geriatric MedicineOslo Delirium Research GroupOslo University HospitalOsloNorway
| | - Lars N.G. Nilsson
- Department of PharmacologyUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Leiv Otto Watne
- Department of Geriatric MedicineOslo University HospitalOsloNorway
- Department of Geriatric MedicineOslo Delirium Research GroupOslo University HospitalOsloNorway
| | - Karin Persson
- Department of Dementia ResearchNorwegian National Advisory Unit on Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Department of Geriatric MedicineOslo University HospitalOsloNorway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement ScienceNorwegian University of Science and TechnologyTrondheimNorway
- Department of GeriatricsSt. Olavs HospitalUniversity Hospital of TrondheimTrondheimNorway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement ScienceNorwegian University of Science and TechnologyTrondheimNorway
- Department of GeriatricsSt. Olavs HospitalUniversity Hospital of TrondheimTrondheimNorway
| | - Nathalie Bodd Halaas
- Institute of Clinical Medicine and Institute of Health and SocietyFaculty of MedicineUniversity of OsloOsloNorway
- Department of Geriatric MedicineOslo Delirium Research GroupOslo University HospitalOsloNorway
- Department of PsychologyCenter for Lifespan Changes in Brain and CognitionUniversity of OsloOsloNorway
| | - Geir Selbæk
- Department of Dementia ResearchNorwegian National Advisory Unit on Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Department of Geriatric MedicineOslo University HospitalOsloNorway
- Institute of Clinical Medicine and Institute of Health and SocietyFaculty of MedicineUniversity of OsloOsloNorway
| | - Knut Engedal
- Department of Dementia ResearchNorwegian National Advisory Unit on Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Department of Geriatric MedicineOslo University HospitalOsloNorway
| | - Bjørn Heine Strand
- Department of Dementia ResearchNorwegian National Advisory Unit on Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Institute of Clinical Medicine and Institute of Health and SocietyFaculty of MedicineUniversity of OsloOsloNorway
- Department of Chronic Diseases and AgeingNorwegian Institute of Public HealthOsloNorway
| | | |
Collapse
|
12
|
Clinical Utility of the Pathogenesis-Related Proteins in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21228661. [PMID: 33212853 PMCID: PMC7698353 DOI: 10.3390/ijms21228661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the Aβ cascade and alternations of biomarkers in neuro-inflammation, synaptic dysfunction, and neuronal injury followed by Aβ have progressed. But the question is how to use the biomarkers. Here, we examine the evidence and pathogenic implications of protein interactions and the time order of alternation. After the deposition of Aβ, the change of tau, neurofilament light chain (NFL), and neurogranin (Ng) is the main alternation and connection to others. Neuro-inflammation, synaptic dysfunction, and neuronal injury function is exhibited prior to the structural and metabolic changes in the brain following Aβ deposition. The time order of such biomarkers compared to the tau protein is not clear. Despite the close relationship between biomarkers and plaque Aβ deposition, several factors favor one or the other. There is an interaction between some proteins that can predict the brain amyloid burden. The Aβ cascade hypothesis could be the pathway, but not all subjects suffer from Alzheimer's disease (AD) within a long follow-up, even with very elevated Aβ. The interaction of biomarkers and the time order of change require further research to identify the right subjects and right molecular target for precision medicine therapies.
Collapse
|
13
|
Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020; 8:E421. [PMID: 33076333 PMCID: PMC7602623 DOI: 10.3390/biomedicines8100421] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is a highly complex process which is associated with a variety of molecular mechanisms related to ageing. Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common, affecting more than 45 million individuals. The underlying mechanisms involve amyloid plaques and neurofibrillary tangles (NFTs) deposition, which will subsequently lead to oxidative stress, chronic neuroinflammation, neuron dysfunction, and neurodegeneration. The current diagnosis methods are still limited in regard to the possibility of the accurate and early detection of the diseases. Therefore, research has shifted towards the identification of novel biomarkers and matrices as biomarker sources, beyond amyloid-β and tau protein levels within the cerebrospinal fluid (CSF), that could improve AD diagnosis. In this context, the aim of this paper is to provide an overview of both conventional and novel biomarkers for AD found within body fluids, including CSF, blood, saliva, urine, tears, and olfactory fluids.
Collapse
Affiliation(s)
- Adrian Florian Bălașa
- Târgu Mures, Emergency Clinical Hospital, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mures, RO-540142 Târgu Mures, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| |
Collapse
|
14
|
Knapskog AB, Henjum K, Idland AV, Eldholm RS, Persson K, Saltvedt I, Watne LO, Engedal K, Nilsson LNG. Cerebrospinal fluid sTREM2 in Alzheimer's disease: comparisons between clinical presentation and AT classification. Sci Rep 2020; 10:15886. [PMID: 32985583 PMCID: PMC7522273 DOI: 10.1038/s41598-020-72878-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by microglia. Its cleaved fragments, soluble TREM2 (sTREM2), can be measured in the cerebrospinal fluid (CSF). Previous studies indicate higher CSF sTREM2 in symptomatic AD; however most of these studies have included biomarker positive AD cases and biomarker negative controls. The aim of the study was to explore potential differences in the CSF level of sTREM2 and factors associated with an increased sTREM2 level in patients diagnosed with mild cognitive impairment (MCI) or dementia due to AD compared with cognitively unimpaired controls as judged by clinical symptoms and biomarker category (AT). We included 299 memory clinic patients, 62 (20.7%) with AD-MCI and 237 (79.3%) with AD dementia, and 113 cognitively unimpaired controls. CSF measures of the core biomarkers were applied to determine AT status. CSF sTREM2 was analyzed by ELISA. Patients presented with comparable CSF sTREM2 levels as the cognitively unimpaired (9.6 ng/ml [SD 4.7] versus 8.8 ng/ml [SD 3.6], p = 0.27). We found that CSF sTREM2 associated with age-related neuroinflammation and tauopathy irrespectively of amyloid β, APOE ε4 status or gender. The findings were similar in both symptomatic and non-symptomatic individuals.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.
| | - Kristi Henjum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane-Victoria Idland
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Karin Persson
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway
| | - Knut Engedal
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Imbimbo BP, Lozupone M, Watling M, Panza F. Discontinued disease-modifying therapies for Alzheimer's disease: status and future perspectives. Expert Opin Investig Drugs 2020; 29:919-933. [PMID: 32657175 DOI: 10.1080/13543784.2020.1795127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the main cause of dementia and represents a huge burden for patients, carers, and healthcare systems. Extensive efforts for over 20 years have failed to find effective disease-modifying drugs. Although amyloid-β (Aβ) accumulation in the brain predicts cognitive decline, effective reduction of plaque load by numerous drug candidates has not yielded significant clinical benefits. A similar pattern is now emerging for drugs which target hyperphosphorylated tau, and trials with anti-inflammatory drugs have been negative despite neuroinflammation appearing to have a crucial role in AD pathogenesis. AREAS COVERED This article reviews key drugs that have been discontinued while in development for AD and delineates the future landscape for present and alternative approaches. EXPERT OPINION Anti-Aβ drugs have failed to validate the Aβ cascade hypothesis of AD. Early findings suggest that the same is happening with therapeutics targeting tau and focussing future research solely on anti-tau drugs is inappropriate. Alternative targets should be pursued, including apolipoprotein E, immunomodulation, plasma exchange, protein autophagy and clearance, mitochondrial dysfunction, abnormal glucose metabolism, neurovascular unit support, epigenetic dysregulation, synaptic loss and dysfunction, microbiota dysbiosis, and combination therapies. Meanwhile, repurposing of drugs approved for other indications is justified where scientific rationale and robust preclinical evidence exist.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici , Parma, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy.,Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners , Reading, UK
| | - Francesco Panza
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy
| |
Collapse
|