Moriya-Ito K, Endoh K, Ichikawa M. Vomeronasal neurons promote synaptic formation on dendritic spines but not dendritic shafts in primary culture of accessory olfactory bulb neurons.
Neurosci Lett 2008;
451:20-4. [PMID:
19103255 DOI:
10.1016/j.neulet.2008.12.009]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/05/2008] [Accepted: 12/06/2008] [Indexed: 11/25/2022]
Abstract
To investigate the morphological changes of accessory olfactory bulb (AOB) neurons arising from pheromonal signals, a coculture system of AOB neurons and vomeronasal (VN) neurons had been established. Our previous study indicates that under coculture condition, the density of dendritic spines of an AOB neuron is less and the individual spine-head volume is larger than those under monoculture condition. In this study, to determine whether these differences in the dendrites of AOB neurons reflect the differences in synapse formation and synaptic properties, we observed these cultured cells by electron microscopy. Various synapses were observed under each culture condition. Synapses were classified on the basis of their postsynaptic structure and the size of postsynaptic density (PSD) was measured. Under the coculture condition with VN neurons, synapses on dendritic spines, which formed between AOB neurons, were observed frequently. In contrast, many synapses were formed on dendritic shafts under monoculture condition. The PSD of asymmetrical synapses on the spines under coculture condition was larger than that under monoculture condition. Moreover, some dendrodendritic reciprocal synapses were found only in coculture. We confirmed synapse formation between VN axons and AOB dendrites by immunohistochemical electron microscopy; thus, the characteristics of synapses between AOB neurons are considered to be modified by the synaptic contacts with VN axons.
Collapse