1
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Sharma S, Sengupta P. High resolution mass spectrometry-driven metabolite profiling of baricitinib to report its unknown metabolites and step-by-step reaction mechanism of metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9385. [PMID: 36018833 DOI: 10.1002/rcm.9385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Metabolite profiling is an integral part of the drug development process for selecting candidates with high therapeutic efficacy and low risk. Baricitinib (BARI) was approved in 2018 by the US Food and Drug Administration to treat rheumatoid arthritis. According to the available literature, no systematic study has been reported on the metabolite profiling of BARI. The biotransformation pathway of the drug has also not been established until recently. This study aims to identify BARI metabolites generated in in vitro matrices. METHODS The in vitro metabolism study was carried out using rat liver microsome, human liver microsomes, and human S9 fraction. Ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (U-HPLC-Q/TOF) and ultra-high-performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS/MS) were used to identify and characterize the metabolites of BARI. The in silico toxicity of BARI and its metabolite was studied using ProTox-II toxicity predictor software. RESULTS A total of five new metabolites have been identified amongst which two (M1 and M2) were detected on both U-HPLC/LTQ-Orbitrap-MS/MS and U-HPLC-Q/TOF and two additional metabolites (M4 and M5) were detected on U-HPLC/LTQ-Orbitrap-MS/MS. Moreover, one metabolite (M3) was only detected on LC-QTOF. CONCLUSIONS The major metabolic changes were found to be N-dealkylation, demethylation, hydroxylation, and hydrolysis. Metabolites M3 and M4 were found to have the potential for carcinogenicity. The novelty of the study can be justified by the unavailability of any previous research on in vitro metabolite profiling of BARI. Furthermore, this is the first time the biotransformation pathway of BARI and the toxicity potential of its metabolites have been reported.
Collapse
Affiliation(s)
- Megha Rachmale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Pillai MS, Paritala ST, Shah RP, Sharma N, Sengupta P. Cutting-edge strategies and critical advancements in characterization and quantification of metabolites concerning translational metabolomics. Drug Metab Rev 2022; 54:401-426. [PMID: 36351878 DOI: 10.1080/03602532.2022.2125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite remarkable progress in drug discovery strategies, significant challenges are still remaining in translating new insights into clinical applications. Scientists are devising creative approaches to bridge the gap between scientific and translational research. Metabolomics is a unique field among other omics techniques for identifying novel metabolites and biomarkers. Fortunately, characterization and quantification of metabolites are becoming faster due to the progress in the field of orthogonal analytical techniques. This review detailed the advancement in the progress of sample preparation, and data processing techniques including data mining tools, database, and their quality control (QC). Advances in data processing tools make it easier to acquire unbiased data that includes a diverse set of metabolites. In addition, novel breakthroughs including, miniaturization as well as their integration with other devices, metabolite array technology, and crystalline sponge-based method have led to faster, more efficient, cost-effective, and holistic metabolomic analysis. The use of cutting-edge techniques to identify the human metabolite, including biomarkers has proven to be advantageous in terms of early disease identification, tracking the progression of illness, and possibility of personalized treatments. This review addressed the constraints of current metabolomics research, which are impeding the facilitation of translation of research from bench to bedside. Nevertheless, the possible way out from such constraints and future direction of translational metabolomics has been conferred.
Collapse
Affiliation(s)
- Megha Sajakumar Pillai
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sree Teja Paritala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
3
|
Jogpethe A, Jadav T, Rajput N, Kumar Sahu A, Das R, Gupta A, Shard A, Sengupta P. LC/Q-TOF MS and LC/QQQ MS based bioanalysis of a new ferrocene derivative as a potential anticancer lead with promising drug-like characteristics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123469. [PMID: 36137491 DOI: 10.1016/j.jchromb.2022.123469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Pyrazolopyrimidine ring present in various approved drugs is reported to target the tyrosine kinase receptor. A new pyrazolopyrimidine ferrocene derivative, which targets tumor pyruvate kinase M2 showed an impressive antiproliferative profile against human oral squamous cell carcinoma cell line CAL27 assessed using Alamar blue assay. In line with the lead optimization process, the molecule was studied for physicochemical properties where a bioanalytical method has been developed in plasma on liquid chromatography-mass spectrometry and validated following the USFDA bioanalytical method validation guideline. Plasma stability and plasma protein binding potential of the molecule have been evaluated. All the major metabolites of the compound have been identified through in vitro metabolite study employing rat liver microsome, human liver microsome, and human S9 fractions. The in silico toxicity profile of the metabolites was assessed using ProTox II software. Log P, Log D, and pKa of the molecule were found to be 4.5, 5, and 12, respectively. The molecule was found to be quite stable in plasma and have a moderate affinity towards plasma proteins (about 75 % binding). Four major metabolites have been identified and characterized by UHPLCQ-TOF-MS. The metabolites were found to have a moderate safety profile. The validated bioanalytical method and the metabolic pathway will be useful for future clinical studies and to assess the safety profile of the molecule. The finding of this study may also be useful in analyzing the desired drug-like properties through bioanalysis while designing new chemical entities based on metallocenes.
Collapse
Affiliation(s)
- Ashish Jogpethe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Kumar Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
4
|
Rihan M, Vineela Nalla L, Dharavath A, Patel S, Shard A, Khairnar A. Boronic acid derivative activates pyruvate kinase M2 indispensable for redox metabolism in oral cancer cells. Bioorg Med Chem Lett 2022; 59:128539. [PMID: 35007726 DOI: 10.1016/j.bmcl.2022.128539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
PKM2is considered a desirable target as its enzymatic activation is expected to cause a diminution in tumorigenesis and prevent limitless replication in cancerous cells. However, considering the functional consequences of kinase inhibitors, the design of PKM2 activators has been an attractive strategy that has yielded potent anticancer molecules like DASA-58. Therefore, a new class of boronic acid derivate was developed to elucidate the possible mechanistic link between PKM2 activation and TPI1 activity, which has a significant role in the redox balance in cancer. The present in vitro study revealed that treatment with boronic acid-based compound 1 and DASA-58 was found to activate PKM2 with an AC50 of 25 nM and 52 nM, respectively. Furthermore, at the AC50 concentration of compound 1, we found a significant increase in TPI1 activity and a decrease in GSH and NADP+/NADPH ratio. We also found increased ROS levels and decreased lactate secretion with treatment. Together with these findings, we can presume that compound 1 affects the redox balance by activating PKM2 and TPI1 activity. Implementation of this treatment strategy may improve the effect of chemotherapy in the conditions of ROS induced cancer drug resistance. This study for the first time supports the link between PKM2 and the TPI1 redox balance pathway in oral cancer. Collectively, the study findings provide a novel molecule for PKM2 activation for the therapeutic intervention in oral cancer.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil Dharavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| |
Collapse
|
5
|
Sonawane D, Sahu AK, Jadav T, Sengupta P. UHPLC-Q-TOF-MS/MS based metabolite profiling of duvelisib and establishment of its metabolism mechanisms. Biomed Chromatogr 2022; 36:e5314. [PMID: 34981541 DOI: 10.1002/bmc.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Duvelisib is a dual inhibitor of phosphoinositide 3 kinase that received global approval by USFDA in 2018 to treat follicular lymphoma after at least two prior systemic therapies. An extensive literature search revealed that till date, metabolites of duvelisib are not characterized and information on the same is not available in any literature. Moreover, its metabolism pathway is yet to be established. This study aimed to investigate and characterize the metabolites of duvelisib generated in microsomes and S9 fractions. In this study, five duvelisib metabolites have been identified using UHPLC-Q-TOF-MS/MS technique of analysis. The structural characterisation of the metabolites was performed by comparing the fragmentation pattern of duvelisib and its metabolites through an accurate mass measurement technique. Three metabolites were found to be generated through phase I hydroxylation and dechlorination reaction. The other two metabolites were generated through a phase II glucuronidation reaction. The metabolism mechanism established through this study can be useful to improve the safety profile of the drug of its similar category in the future after establishment their toxicity profile of the identified metabolites.
Collapse
Affiliation(s)
- Dipali Sonawane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Sharma MK, Sahu AK, Shah RP, Sengupta P. A systematic UHPLC-Q-TOF-MS/MS based analytical approach for characterization of flibanserin metabolites and establishment of biotransformation pathway. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:123011. [PMID: 34735976 DOI: 10.1016/j.jchromb.2021.123011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
A systematic metabolite profiling approach has paramount importance in detecting, identifying, and characterizing drug metabolites. Till date, there is no report published on the comprehensive metabolic fate of flibanserin (FLB). In this study, the structure of entire potential metabolites of FLB has been elucidated by execution of in silico tool and high resolution mass spectrometry based metabolite profiling strategy employing data-dependent and data-independent approaches. In vitro metabolism profile was investigated after incubating FLB with liver microsomes (rat and human) and S9 fractions in presence of their respective co-factors. In vivo metabolites were identified from rat plasma, urine, feces, and brain tissue samples. An efficient extraction technique was developed that made it possible to identify the metabolites generated even in extremely low concentrations. Extraction was carried out by precipitating protein and thereafter solid-phase extraction to enrich their concentration in the sample before analysis. Fourteen new metabolites have been identified and characterized. Most of the metabolites of FLB were generated due to hydrolysis and oxidation followed by glucuronide, sulfate, and methyl conjugation. Additionally, a spiking study was employed to confirm the presence of N-oxide metabolite in human liver S9 fraction and rat urine samples. Moreover, we have established the probable biotransformation pathway of FLB and successfully analyzed the toxicity potential of the metabolites using Pro Tox-II software.
Collapse
Affiliation(s)
- Manish Kumar Sharma
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ravi P Shah
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
7
|
Patle R, Shinde S, Patel S, Maheshwari R, Jariyal H, Srivastava A, Chauhan N, Globisch C, Jain A, Tekade RK, Shard A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett 2021; 42:128062. [PMID: 33901643 DOI: 10.1016/j.bmcl.2021.128062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Several studies have established that cancer cells explicitly over-express the less active isoform of pyruvate kinase M2 (PKM2) is critical for tumorigenesis. The activation of PKM2 towards tetramer formation may increase affinity towards phosphoenolpyruvate (PEP) and avoidance of the Warburg effect. Herein, we describe the design, synthesis, and development of boronic acid-based molecules as activators of PKM2. The designed molecules were inspired by existing anticancer scaffolds and several fragments were assembled in the derivatives. 6a-6d were synthesized using a multi-step synthetic strategy in 55-70% yields, starting from cheap and readily available materials. The compounds were selectively cytotoxic to kill the cancerous cells at 80 nM, while they were non-toxic to the normal cells. The kinetic studies established the compounds as novel activators of PKM2 and (E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxycarbonyl)-3-oxoprop-1-en-1-yl) phenyl)boronic acid (6c) emerged as the most potent derivative. 6c was further evaluated using various in silico tools to understand the molecular mechanism of tetramer formation. Docking studies revealed that 6c binds to the PKM2 dimer at the dimeric interface. Further to ascertain the binding site and mechanism of action, rigorous MD (molecular dynamics) simulations were undertaken, which led to the conclusion that 6c stabilizes the center of the dimeric interface that possibly promotes tetramer formation. We further planned to make a tablet of the developed molecule for oral delivery, but it was seriously impeded owing to poor aqueous solubility of 6c. To improve aqueous solubility and retain 6c at the lower gastrointestinal tract, thiolated chitosan-based nanoparticles (TCNPs) were prepared and further developed as tablet dosage form to retain anticancer potency in the excised goat colon. Our findings may provide a valuable pharmacological mechanism for understanding metabolic underpinnings that may aid in the clinical development of new anticancer agents targeting PKM2.
Collapse
Affiliation(s)
- Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Shital Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rahul Maheshwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Akshay Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Neelam Chauhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | | | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rakesh K Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| |
Collapse
|
8
|
Panday NK, Thakkar D, Patel S, Shard A, Sengupta P. Metabolite profiling of IMID-2, a novel anticancer molecule of piperazine derivative: In silico prediction, in vitro and in vivo metabolite characterization using UPLC-QTOF-MS/MS. Biomed Chromatogr 2021; 35:e5082. [PMID: 33570183 DOI: 10.1002/bmc.5082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/21/2023]
Abstract
IMID-2, a newly identified piperazine-based anticancer molecule, has been shown to be cytotoxic against various cancer cell lines. The primary aim of this research was to identify and characterize possible metabolites of the molecule formed during biotransformation. A metabolite identification study was first executed using an in silico tool to predict the possible metabolism sites of IMID-2. Thereafter, metabolites generated in vitro (rat liver microsomes, rat S9 fractions and human liver microsomes) and in vivo (rat plasma, urine and feces) were identified and characterized employing UPLC-QTOF-MS/MS. A total of eight metabolites, among which were six in phase I and two in phase II reactions, were recognized. The plausible structure of the metabolites and probable metabolic pathway have been established based on the mass fragmentation pattern, mass ppm error, ring double bond calculation and nitrogen rule. The majority of phase I metabolites were generated by N-oxidation, hydroxylation, oxidative deamination followed by reduction, oxidative dechlorination, N-dearylation, and N-dealkylation. Glucuronidation played a significant role in the formation of phase II metabolites of the molecule.
Collapse
Affiliation(s)
- Niraj Kumar Panday
- National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India.,Department of Pharmaceutical Analysis, India
| | - Disha Thakkar
- National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India.,Department of Pharmaceutical Analysis, India
| | - Sagarkumar Patel
- National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India.,Department of Medicinal Chemistry, India
| | - Amit Shard
- National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India.,Department of Medicinal Chemistry, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar, Gujarat, India.,Department of Pharmaceutical Analysis, India
| |
Collapse
|