1
|
Kong L, Dong Y, Shu G, Feng Y, Zhu M. Multienzyme-Mediated Dual-Channel Magnetic Relaxation Switching Taste Biosensor (D-MRSTB) for Simultaneous Detection of Umami Compounds and Synergistic Enhancement in Food. ACS Sens 2024; 9:1820-1830. [PMID: 38604805 DOI: 10.1021/acssensors.3c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Umami substances play a significant role in the evaluation of food quality, and their synergistic enhancement is of great importance in improving and intensifying food flavors and tastes. Current biosensors available for umami detection still confront challenges in simultaneous quantification of multiple umami substances and umami intensities. In this study, an innovative dual-channel magnetic relaxation switching taste biosensor (D-MRSTB) was developed for the quantitative detection of representative umami substances. The multienzyme signal of D-MRSTB specifically catalyzes the umami substances of interest to generate hydrogen peroxide (H2O2), which is then used to oxidate Fe2+ to Fe3+. Such a valence-state transition of paramagnetic ions was utilized as a magnetic relaxation signaling switch to influence the transverse magnetic relaxation time (T2) within the reaction milieu, thus achieving simultaneous detection of monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP). The biosensor showed good linearity (R2 > 0.99) in the concentration range of 50-1000 and 10-1000 μmol/L, with limits of detection (LOD) of 0.61 and 0.09 μmol/L for MSG and IMP, respectively. Furthermore, the biosensor accurately characterized the synergistic effect of the mixed solution of IMP and MSG, where ΔT2 showed a good linear relationship with the equivalent umami concentration (EUC) of the mixed solution (R2 = 0.998). Moreover, the D-MRSTB successfully achieved the quantitative detection of umami compounds in real samples. This sensing technology provides a powerful tool for achieving the detection of synergistic enhancement among umami compounds and demonstrates its potential for application in the food industry.
Collapse
Affiliation(s)
- Liqin Kong
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongzhen Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian 116039, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116039, Liaoning, China
| | - Guoqiang Shu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yaoze Feng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ming Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
| |
Collapse
|
2
|
Kamal AH, El-Malla SF, Elattar RH, Mansour FR. Determination of Monosodium Glutamate in Noodles Using a Simple Spectrofluorometric Method based on an Emission Turn-on Approach. J Fluoresc 2023:10.1007/s10895-023-03143-0. [PMID: 36648625 PMCID: PMC10361856 DOI: 10.1007/s10895-023-03143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
A simple, fast, and ecofriendly spectrofluorometric method was developed and validated for determination of mono sodium glutamate (MSG). The method depended on the reaction between MSG and iron (III) salicylate based on ligand exchange mechanism. Addition of MSG turned-on the fluorescent response of iron (III) salicylate at λem 411 nm. Reaction conditions including reagent concentration, pH, and time were optimized. The method was validated regarding the ICH guidelines. The method determined MSG within the linearity range of 25-250 µM with a coefficient of determination of 0.9967 and a calculated limit of detection of 1.73 µM. Furthermore, the developed method was successfully applied for the determination of MSG in food preparation (instant noodles). The results were compared to those obtained by a published HPLC method using t-test and F-test at 95% confidence interval; no statistically significant difference was found. Based on the analytical Eco-scale and the green analytical procedure index (GAPI), the developed method was assessed to be greener than the published HPLC method. The developed method offered advantages over other spectrophotometric reported methods and was convenient for routine determination of MSG in foodstuffs.
Collapse
Affiliation(s)
- Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt
| | - Samah F El-Malla
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt
| | - Rehab H Elattar
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
3
|
Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|