1
|
Xiao S, Sun L, Lu J, Dong Z. A label-free aptasensor for rapid detection of clenbuterol based on SYBR GREEN I. NEW J CHEM 2022. [DOI: 10.1039/d2nj01959k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free fluorescent biosensor based on clenbuterol binding aptamer and the fluorescent intercalator SYBR Green I (SGI) was established for the sensitive and selective detection of clenbuterol. In the absence...
Collapse
|
2
|
Xiao S, Sun L, Kang M, Dong Z. A label-free aptasensor for clenbuterol detection based on fluorescence resonance energy transfer between graphene oxide and rhodamine B. RSC Adv 2022; 12:32737-32743. [DOI: 10.1039/d2ra06260g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
A label-free aptasensor for clenbuterol was developed through the fluorescence resonance energy transfer mechanism by using an aptamer as the recognition element, rhodamine B as the fluorescence probe and graphene oxide as the fluorescence quencher.
Collapse
Affiliation(s)
- Shuyan Xiao
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Liang Sun
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Mingqin Kang
- Changchun Customs Technology Center, Changchun 130062, China
| | - Zhongping Dong
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
3
|
Protti M, Sberna PM, Sardella R, Vovk T, Mercolini L, Mandrioli R. VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS. J Pharm Biomed Anal 2021; 195:113873. [PMID: 33422835 DOI: 10.1016/j.jpba.2020.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Clenbuterol is a chiral, selective β2-adrenergic agonist. It is administered as a racemic mixture for therapeutic purposes (as a bronchodilator or prospective neuroprotective agent), but also for non-therapeutic uses (athletic performance enhancement, cattle growth promotion). Aim of the present study is to develop an original, enantioselective workflow for the analysis of clenbuterol enantiomers in urine microsamples. An innovative miniaturised sampling procedure by volumetric absorptive microsampling (VAMS) and a microsample pretreatment strategy based on stop-and-go extraction (StAGE) tips were developed and coupled to an original, chiral analytical method, exploiting liquid chromatography with triple quadrupole detection (LC-MS/MS). The method was validated, with satisfactory results: good linearity (r2 ≥ 0.9995) and LOQ values (0.3 ng/mL) were found over suitable concentration ranges. Extraction yield (>87 %), precision (RSD < 4.3 %) and matrix effect (85-90 %) were all within acceptable levels of confidence. After validation, the method was applied to the determination of clenbuterol in dried urine sampled by VAMS from patients taking the drug for therapeutic reasons. Analyte content ranged from 0.8 to 2.5 ng/mL per single enantiomer, with substantial retention of the original drug racemic composition. The VAMS-StAGE-LC-MS/MS workflow seems to be suitable for future application to anti-doping testing of clenbuterol in urine.
Collapse
Affiliation(s)
- Michele Protti
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Paolo M Sberna
- Department of Microelectronics, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, the Netherlands
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
4
|
Rossini EL, Kulyk DS, Ansu-Gyeabourh E, Sahraeian T, Pezza HR, Badu-Tawiah AK. Direct Analysis of Doping Agents in Raw Urine Using Hydrophobic Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1212-1222. [PMID: 32357004 PMCID: PMC7891915 DOI: 10.1021/jasms.0c00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the direct analysis of doping agents in urine samples with no sample preparation by a modified paper spray mass spectrometry (PS-MS) methodology has been demonstrated for the first time. We have described a paper surface treatment with trichloromethylsilane using a gas-phase reaction to increase the ionization of target compounds. This approach was applied for the analysis of two classes of banned substances in urine samples: anabolic agents (trenbolone and clenbuterol) and diuretics (furosemide and hydrochlorothiazide). Under optimized conditions, the developed methods presented satisfactory repeatability, and an analysis of variance showed linearity without lack-of-fit. Highly sensitive detections as low as sub-nanogram per milliliter levels, which is below the minimum required performance levels proposed by the World Anti-Doping Agency, have been reached using the hydrophobic PS-MS analysis without any preconcentration and cleanup step.
Collapse
Affiliation(s)
- Eduardo Luiz Rossini
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
- Institute of Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, R. Prof. Francisco Degni 55, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Emelia Ansu-Gyeabourh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Helena Redigolo Pezza
- Institute of Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, R. Prof. Francisco Degni 55, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Jiang X, Pan W, Chen M, Yuan Y, Zhao L. The fabrication of a thiol-modified chitosan magnetic graphene oxide nanocomposite and its adsorption performance towards the illegal drug clenbuterol in pork samples. Dalton Trans 2020; 49:6097-6107. [PMID: 32322867 DOI: 10.1039/d0dt00705f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel thiol (provided by (3-mercaptopropyl) trimethoxysilane, MPTS)-modified chitosan magnetic graphene oxide nanocomposite (Fe3O4@SiO2/GO/CS/MPTS) was synthesized and characterized for the first time as an efficient magnetic sorbent for the enrichment and extraction of trace levels of clenbuterol in pork samples (muscle, fat, heart and liver). Various greatly influential parameters were optimized using a Box-Behnken design (BBD) through the response surface methodology (RSM) to obtain more satisfactory recovery. Under optimum conditions, the method detection limits (MDLs) were in the range of 0.054-0.136 ng g-1. The recoveries of three spiked levels ranged from 84.7% to 101.1%, and the relative standard deviations (RSDs) were lower than 9.3%. The results of the adsorption experiments showed that the maximum adsorption capacity of Fe3O4@SiO2/GO/CS/MPTS for clenbuterol was 214.13 mg g-1. The adsorption process was most consistent with pseudo second-order kinetics and Langmuir adsorption isotherm, indicating a homogeneous process with a chemisorptive nature. Also, the nanocomposite exhibited high adsorption capability for clenbuterol compared with Fe3O4@SiO2/GO and Fe3O4@SiO2/GO/CS. In addition, regeneration of the nanocomposite was effectively achieved, and it retained about 82% of its initial capacity after four cycles. All these results indicate that the synthetic nanocomposite is a promising efficient adsorbent for the adsorption of clenbuterol with high adsorption capacity and low cost.
Collapse
Affiliation(s)
- Xu Jiang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Talib NAA, Salam F, Sulaiman Y. Development of Highly Sensitive Immunosensor for Clenbuterol Detection by Using Poly(3,4-ethylenedioxythiophene)/Graphene Oxide Modified Screen-Printed Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4324. [PMID: 30544568 PMCID: PMC6308686 DOI: 10.3390/s18124324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022]
Abstract
Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R² = 0.9619 and low limit of detection (0.196 ng mL-1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).
Collapse
Affiliation(s)
- Nurul Ain A Talib
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Faridah Salam
- Biodiagnostic-Biosensor Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Yusran Sulaiman
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
7
|
Liu J, Tang C, Long R, Zhang K, Han Y, Zhao Q, Wang H, Zhao F, Meng Q, Zhang J. The use of hair as a long-term indicator of low-dose β 2 agonist treatments in cattle: Implications for growth-promoting purposes monitoring. Drug Test Anal 2018; 11:745-751. [PMID: 30474322 DOI: 10.1002/dta.2551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022]
Abstract
The objective of this study was to assess the feasibility of using hair as a long-term indicator of cocktail (low-dose β2 agonists) treatments in cattle. Six male Simmental cattle were treated with a mixture of low-dose clenbuterol, ractopamine, and salbutamol at dosages of 5.3, 223.3, and 50.0 μg/kg, respectively. The trial lasted for 112 days and included 28 days of treatment and 84 days of withdrawal. Plasma and urine samples taken during the treatment period contained the highest residues, with maximum concentrations of clenbuterol, ractopamine, and salbutamol in plasma of 1.49 ng/mL (Day 21), 43.78 (Day 14) ng/mL, and 8.07 ng/mL (Day 7), respectively, and in urine of 62.40 ng/mL (Day 28), 3995.77 ng/mL (Day 28), and 503.72 ng/mL (Day 1), respectively. On day 42 of withdrawal, the residues of all three β2 agonists in plasma were below the limit of quantification (LOQ; 0.3 ng/mL for clenbuterol, and 0.5 ng/mL for ractopamine and salbutamol), and in urine samples were below or near the LOQ (the highest being ractopamine at 1.10 ng/mL). The highest concentrations of clenbuterol, ractopamine, and salbutamol in hair were 88.36, 1351.92, and 100.58 ng/g, respectively, on day 14 of withdrawal; and the residues were long-lasting, with 7.64, 28.55, and 8.77 ng/g, respectively, on day 84 of withdrawal. The results of this study demonstrate that hair could be utilized as a long-term indicator of the use of a combination of low-dose β2 agonists in cattle, which could have implications for growth-promoting purposes monitoring.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruijun Long
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongliang Wang
- Institution of Animal Science, Academy of Land Reclamation Science, Harbin, Heilongjiang, China
| | - Fuzhong Zhao
- Institution of Animal Science, Academy of Land Reclamation Science, Harbin, Heilongjiang, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wei L, Wang T, Liu Y, Wang C, Zhang J. Label-free Microcantilever Immunosensor Based on a Competitive Immunoassay for the Determination of Clenbuterol. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1415919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linhong Wei
- Jiangsu Key Laboratory of Environmental Engineering and Monitoring, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- College of Biological and Chemical Engineering, Yangzhou Vocational University, Yangzhou, China
| | - Ting Wang
- Jiangsu Key Laboratory of Environmental Engineering and Monitoring, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yushu Liu
- Jiangsu Key Laboratory of Environmental Engineering and Monitoring, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Chengyin Wang
- Jiangsu Key Laboratory of Environmental Engineering and Monitoring, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- Engineering Research Center, Yangzhou Vocational University, Yangzhou, China
| |
Collapse
|
9
|
Špánik I, Machyňáková A. Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci 2017; 41:163-179. [PMID: 29111584 DOI: 10.1002/jssc.201701016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well.
Collapse
Affiliation(s)
- Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Bratislava, Slovakia
| | - Andrea Machyňáková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Bratislava, Slovakia
| |
Collapse
|
10
|
Peñuela-Pinto O, Armenta S, Esteve-Turrillas FA, de la Guardia M. Selective determination of clenbuterol residues in urine by molecular imprinted polymer—Ion mobility spectrometry. Microchem J 2017. [DOI: 10.1016/j.microc.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.03.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Regiart M, Escudero LA, Aranda P, Martinez NA, Bertolino FA, Raba J. Copper nanoparticles applied to the preconcentration and electrochemical determination of β-adrenergic agonist: An efficient tool for the control of meat production. Talanta 2015; 135:138-44. [DOI: 10.1016/j.talanta.2014.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/27/2022]
|
13
|
Simultaneous determination of blockers and agonists by on-fiber derivatization in self-made solid-phase microextraction coating fiber. Talanta 2015; 132:915-21. [DOI: 10.1016/j.talanta.2014.07.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 11/22/2022]
|
14
|
Xu J, Li Y, Guo J, Shen F, Luo Y, Sun C. Fluorescent detection of clenbuterol using fluorophore functionalized gold nanoparticles based on fluorescence resonance energy transfer. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Fluorimetric Method Based on Diazotization-Coupling Reaction for Determination of Clenbuterol. J Fluoresc 2014; 24:945-50. [DOI: 10.1007/s10895-014-1376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
16
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2013; 6:164-84. [DOI: 10.1002/dta.1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Höyläämötie 14 00380 Helsinki Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|