1
|
Gurrani S, Prakasham K, Zii Ying JL, Shiea J, Ku YJ, Lin YC, Huang PC, Andaluri G, Lee KC, Ponnusamy VK. A low-cost eco-friendly fast drug extraction (FaDEx) technique for environmental and bio-monitoring of psychoactive drug in urban water and sports-persons' urine samples. ENVIRONMENTAL RESEARCH 2023; 217:114787. [PMID: 36410459 DOI: 10.1016/j.envres.2022.114787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Nicotine is the most prominent psychoactive/addictive chemical substance consumed worldwide among young players in team sports. Moreover, urinary nicotine discharge and nicotine-based products disposal in environmental waters has been unavoidable in recent years. Therefore, sensitive monitoring of nicotine content in environmental waters and human urine samples is essential. In this study, we developed a miniaturized novel green, low-cost, sensitive, in-syringe-based semi-automated fast drug extraction (FaDEx) protocol coupled with gas chromatography-flame ionization detection (GC-FID) for the efficient environmental and bio-monitoring of nicotine in aqueous samples. The FaDEx method consists of two steps; firstly, the target analyte was extracted using dimethyl carbonate (a green solvent) and extraction salts. After that, the extraction solvent was passed automatically through the solid-phase extraction cartridge at a constant flow rate for the cleanup process to achieve the sensitive nicotine analysis by GC-FID. Under optimized experimental conditions, the developed method showed excellent linearity over the concentration ranges between 20-2000 ng mL-1 with a correlation coefficient >0.99. The detection and quantification limits were 4 and 20 ng mL-1, respectively. The presented method was applied to monitor and assess nicotine exposure in sports-persons' urine and environmental water samples. The method accuracy and precision in terms of relative recovery and relative standard deviation (for triplicate analysis) were 85.4-110.2% and ≤8%, respectively. Finally, the impact of our procedure on the environment from a green analytical chemistry view was assessed using a novel metric system called AGREE, and obtained the greenness score of 0.87, indicating its an efficient alternative green analytical protocol for routine environmental and bio-monitoring of nicotine in environmental and biological samples.
Collapse
Affiliation(s)
- Swapnil Gurrani
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Karthikeyan Prakasham
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Jess Lim Zii Ying
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Jentaie Shiea
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Yi-Jia Ku
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Kung-Che Lee
- Department of Athletic Performace, National University of Kaohsiung, Kaohsiung City, 811, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
2
|
Ahmad SM, Nogueira JMF. High throughput bar adsorptive microextraction: A simple and effective analytical approach for the determination of nicotine and cotinine in urine samples. J Chromatogr A 2019; 1615:460750. [PMID: 31866132 DOI: 10.1016/j.chroma.2019.460750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
Abstract
A simple, effective, convenient and environmentally friendly methodology using high throughput bar adsorptive microextraction (HT-BAμE) with microliquid desorption in combination with large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (LVI-GC-MS(SIM)) was applied for the determination of nicotine and cotinine in urine samples. Under optimized experimental conditions, the developed methodology allowed for linear dynamic ranges between 20.0 and 2000.0 μg L-1 with determination coefficients of 0.9991 and 0.9992, as well as average recovery yields of 61.7-67.5% and 53.9-57.8% for nicotine and cotine, respectively. The developed methodology was applied to monitor urine samples from 86 volunteers having different smoking habits, where nicotine and cotinine were quantified in the range from 23.6 to 2612.6 μg L-1. The target compounds were extracted in a HT-BAμE apparatus, which allows for simultaneous microextraction and subsequent back-extraction of up to 100 samples. This is a major improvement over other microextraction techniques. The data from the proposed methodology were satisfactory and in line with current green analytical chemistry guidelines, and proved to be an effective sample preparation alternative with substantial potential for high throughput bioanalysis.
Collapse
Affiliation(s)
- S M Ahmad
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
4
|
Zeeb M, Farahani H, Mirza B, Papan MK. Quantification of Meloxicam in Human Plasma Using Ionic Liquid-Based Ultrasound-Assisted In Situ Solvent Formation Microextraction Followed by High-Performance Liquid Chromatography. J Chromatogr Sci 2018; 56:443-451. [PMID: 31986203 DOI: 10.1093/chromsci/bmy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
A robust extraction method against the variations of sample ionic strength viz. ionic liquid-based ultrasound-assisted in situ solvent formation microextraction (IL-UA-ISFME) was coupled for the first time with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), and successfully used as a more sustainable approach for the determination of meloxicam (MEL) in human plasma. Herein, a hydrophobic IL (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by adding a hydrophilic IL (1-butyl-3-methylimidazolium tetrafluoroborate) to aqueous sample solution containing an ion-exchange reagent (sodium hexafluorophosphate). The target analyte was transferred into the IL medium while the extraction solvent was completely dispersed into the sample using ultrasonic irradiation and then, the settled enriched phase was injected to HPLC. Firstly, main factors affecting the microextraction performance were evaluated and optimized. The linearity was in the range of 5-1,500 ng mL-1 with regression coefficient corresponding to 0.997. Limits of detection (LOD; signal-to-noise ratio (S/N) = 3) and quantification (LOQ, S/N = 10) were 1 and 5 ng mL-1, respectively. An acceptable recovery range of 82.1-93.6% and satisfactory intra-assay (3.6-4.8%, n = 6) and inter-assay (3.3-5.1%, n = 9) precision as well as remarkable sample clean up exhibited good efficiency of the method. The freeze-thaw stability study was performed for samples and standard solutions. To study the applicability of the proposed method, it was employed for the determination of MEL in human plasma after oral administration of the drug and some pharmacokinetic data were achieved. The technique proved to be accurate and reliable for the screening intentions.
Collapse
Affiliation(s)
- Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Pirouzi st., Dehhaghi st., PO Box 1777613651, Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), West Blvd. of Azadi Sport Complex, PO Box 1485733111, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Moazzen Blvd., PO Box 31485-313, Alborz, Iran
| | - Mohammad Kazem Papan
- Department of Chemistry, Payame Noor University, Nakhl st., PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
7
|
Daryakenary MA, Zeeb M. Trace determination of chlorpheniramine in human plasma using magnetic dispersive solid-phase extraction based on a graphene oxide/Fe3O4@polythionine nanocomposite combined with high-performance liquid chromatography. RSC Adv 2017. [DOI: 10.1039/c7ra09707g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide/Fe3O4@polythionine (GO/Fe3O4@PTh) nanocomposite was fabricated for magnetic dispersive solid-phase extraction and high-performance liquid chromatography-ultraviolent detection (HPLC) of chlorpheniramine in human plasma.
Collapse
Affiliation(s)
- Maryam Ahmadi Daryakenary
- Department of Applied Chemistry
- Faculty of Science
- Islamic Azad University South Tehran Branch
- Tehran
- Iran
| | - Mohsen Zeeb
- Department of Applied Chemistry
- Faculty of Science
- Islamic Azad University South Tehran Branch
- Tehran
- Iran
| |
Collapse
|