1
|
Inoue D. Surface Passivation of Norland Optical Adhesive Improves the Guiding Efficiency of Gliding Microtubules in Microfluidic Devices. NANO LETTERS 2024; 24:10790-10795. [PMID: 39146458 DOI: 10.1021/acs.nanolett.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system's application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.
Collapse
Affiliation(s)
- Daisuke Inoue
- Faculty of Design, Kyushu University, Shiobaru 4-9-1, Minami-Ku, Fukuoka 815-8540, Japan
| |
Collapse
|
2
|
Aubrecht P, Smejkal J, Panuška P, Španbauerová K, Neubertová V, Kaule P, Matoušek J, Vinopal S, Liegertová M, Štofik M, Malý J. Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications. RSC Adv 2024; 14:3617-3635. [PMID: 38268545 PMCID: PMC10804231 DOI: 10.1039/d3ra05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Collapse
Affiliation(s)
- Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Petr Panuška
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Klára Španbauerová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Viktorie Neubertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Pavel Kaule
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
- Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jindřich Matoušek
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| |
Collapse
|
3
|
Schneider O, Moruzzi A, Fuchs S, Grobel A, Schulze HS, Mayr T, Loskill P. Fusing spheroids to aligned μ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. Mater Today Bio 2022; 15:100280. [PMID: 35601892 PMCID: PMC9120495 DOI: 10.1016/j.mtbio.2022.100280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Over the last decade, Organ-on-Chip (OoC) emerged as a promising technology for advanced in vitro models, recapitulating key physiological cues. OoC approaches tailored for cardiac tissue engineering resulted in a variety of platforms, some of which integrate stimulation or probing capabilities. Due to manual handling processes, however, a large-scale standardized and robust tissue generation, applicable in an industrial setting, is still out of reach. Here, we present a novel cell injection and tissue generation concept relying on spheroids, which can be produced in large quantities and uniform size from induced pluripotent stem cell-derived human cardiomyocytes. Hydrostatic flow transports and accumulates spheroids in dogbone-shaped tissue chambers, which subsequently fuse and form aligned, contracting cardiac muscle fibers. Furthermore, we demonstrate electrical stimulation capabilities by utilizing fluidic media connectors as electrodes and provide the blueprint of a low-cost, open-source, scriptable pulse generator. We report on a novel integration strategy of optical O2 sensor spots into resin-based microfluidic systems, enabling in situ determination of O2 partial pressures. Finally, a proof-of-concept demonstrating electrical stimulation combined with in situ monitoring of metabolic activity in cardiac tissues is provided. The developed system thus opens the door for advanced OoCs integrating biophysical stimulation as well as probing capabilities and serves as a blueprint for the facile and robust generation of high density microtissues in microfluidic modules amenable to scaling-up and automation.
Collapse
Affiliation(s)
- Oliver Schneider
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie Fuchs
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Alina Grobel
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Henrike S. Schulze
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Torsten Mayr
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
- Corresponding author. Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| |
Collapse
|
4
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
5
|
|
6
|
Shen Y, Shen X, Zhang H, Li X, Shang T, Zhao Y, Wang J, Huang N. Improved corrosion resistance and biocompatibility of biomedical magnesium alloy with polypeptide TK14 functionalised hydrophobic coating. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yang Shen
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | | | - Hao Zhang
- Panzhihua University Panzhihua Sichuan China
| | - Xin Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Tengda Shang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Yuancong Zhao
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Jin Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Nan Huang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| |
Collapse
|
7
|
Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater Sci Eng 2020; 7:2880-2899. [PMID: 34275293 DOI: 10.1021/acsbiomaterials.0c00640] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polydimethylsiloxane (PDMS) is the predominant material used for organ-on-a-chip devices and microphysiological systems (MPSs) due to its ease-of-use, elasticity, optical transparency, and inexpensive microfabrication. However, the absorption of small hydrophobic molecules by PDMS and the limited capacity for high-throughput manufacturing of PDMS-laden devices severely limit the application of these systems in personalized medicine, drug discovery, in vitro pharmacokinetic/pharmacodynamic (PK/PD) modeling, and the investigation of cellular responses to drugs. Consequently, the relatively young field of organ-on-a-chip devices and MPSs is gradually beginning to make the transition to alternative, nonabsorptive materials for these crucial applications. This review examines some of the first steps that have been made in the development of organ-on-a-chip devices and MPSs composed of such alternative materials, including elastomers, hydrogels, thermoplastic polymers, and inorganic materials. It also provides an outlook on where PDMS-alternative devices are trending and the obstacles that must be overcome in the development of versatile devices based on alternative materials to PDMS.
Collapse
Affiliation(s)
- Scott B Campbell
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Joshua Yazbeck
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Chuan Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Sargol Okhovatian
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
8
|
Sticker D, Geczy R, Häfeli UO, Kutter JP. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10080-10095. [PMID: 32048822 DOI: 10.1021/acsami.9b22050] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While there is a steady growth in the number of microfluidics applications, the search for an optimal material that delivers the diverse characteristics needed for the numerous tasks is still nowhere close to being settled. Often overlooked and still underrepresented, the thiol-ene family of polymer materials has an enormous potential for applications in organs-on-a-chip, droplet productions, microanalytics, and point of care testing. In this review, the main characteristics of the thiol-ene materials are given, and advantages and drawbacks with respect to their potential in microfluidic chip fabrication are critically assessed. Select applications, which exploit the versatility of the thiol-ene polymers, are presented and discussed. It is concluded that, in particular, the rapid prototyping possibility combined with the material's resulting mechanical strength, solvent resistance, and biocompatibility, as well as the inherently easy surface functionalization, are strong factors to make thiol-ene polymers strong contenders for promising future materials for many biological, clinical, and technical lab-on-a-chip applications.
Collapse
Affiliation(s)
- Drago Sticker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Reka Geczy
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Guzzi F, Candeloro P, Coluccio ML, Cristiani CM, Parrotta EI, Scaramuzzino L, Scalise S, Dattola E, D’Attimo MA, Cuda G, Lamanna E, Passacatini LC, Carbone E, Krühne U, Di Fabrizio E, Perozziello G. A Disposable Passive Microfluidic Device for Cell Culturing. BIOSENSORS-BASEL 2020; 10:bios10030018. [PMID: 32121446 PMCID: PMC7146476 DOI: 10.3390/bios10030018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
In this work, a disposable passive microfluidic device for cell culturing that does not require any additional/external pressure sources is introduced. By regulating the height of fluidic columns and the aperture and closure of the source wells, the device can provide different media and/or drug flows, thereby allowing different flow patterns with respect to time. The device is made of two Polymethylmethacrylate (PMMA) layers fabricated by micro-milling and solvent assisted bonding and allows us to ensure a flow rate of 18.6 μl/ℎ - 7%/day, due to a decrease of the fluid height while the liquid is driven from the reservoirs into the channels. Simulations and experiments were conducted to characterize flows and diffusion in the culture chamber. Melanoma tumor cells were used to test the device and carry out cell culturing experiments for 48 hours. Moreover, HeLa, Jurkat, A549 and HEK293T cell lines were cultivated successfully inside the microfluidic device for 72 hours.
Collapse
Affiliation(s)
- Francesco Guzzi
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Patrizio Candeloro
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Elisabetta Dattola
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Maria Antonia D’Attimo
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Ernesto Lamanna
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
| | - Ulrich Krühne
- Department of Chemical and Biochemical Engineering, Technology University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Enzo Di Fabrizio
- Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Gerardo Perozziello
- Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (F.G.); (P.C.); (M.L.C.); (C.M.C.); (E.I.P.); (L.S.); (S.S.); (E.D.); (M.A.D.); (G.C.); (E.L.); (L.C.P.); (E.C.)
- Correspondence:
| |
Collapse
|
10
|
Kim JJ, Reátegui E, Hopke A, Jalali F, Roushan M, Doyle PS, Irimia D. Large-scale patterning of living colloids for dynamic studies of neutrophil-microbe interactions. LAB ON A CHIP 2018; 18:1514-1520. [PMID: 29770423 PMCID: PMC5995581 DOI: 10.1039/c8lc00228b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.e. living colloids). The patterned microbes in the living colloid are mechanically trapped inside the wells and fully accessible to neutrophils. Using the assay, we studied the interactions between human neutrophils and Candida albicans and Staphylococcus aureus, two common human pathogens. We also probed the susceptibility of C. albicans colloids to caspofungin, a common antifungal drug.
Collapse
Affiliation(s)
- Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|