1
|
Wang J, Feng J, Sun M, Lian Y, Wang M, Qiao L. Sulfonic acid-functionalized covalent organic frameworks as the coating for stir bar sorptive extraction of fluoroquinolones in milk samples. Mikrochim Acta 2022; 190:5. [PMID: 36469152 DOI: 10.1007/s00604-022-05534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022]
Abstract
Sulfonic acid-functionalized covalent organic frameworks (COF-SO3) as a coating of stir bar sorptive extraction (SBSE) for capturing three fluoroquinolones from milk have been developed. The COF-SO3 material was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. Milk without any typical treatments like protein precipitation and defatting was only diluted five times with water for test. Combined with high-performance liquid chromatography (HPLC), a SBSE-HPLC method was established for detecting fluoroquinolones in milk samples. The corresponding wide linear ranges (4.00-500.0 µg L-1), low detection limits (1.20-2.62 µg L-1), good test repeatability (RSD < 5.2%), and acceptable enrichment factors (56.2-61.5) were implemented for three fluoroquinolones. The analytical method was applied to determine trace targets and provided satisfactory results. Furthermore, the research displayed satisfied reproducibility for bar-to-bar (RSD < 6.5%) and batch-to-batch (RSD < 8.6%) tests.
Collapse
Affiliation(s)
- Jiarui Wang
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Yujing Lian
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Minglin Wang
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Luqin Qiao
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China.
| |
Collapse
|
2
|
Ayazi Z, Safarpour M, Ahmadi F. Monolithic polyethersulfone membrane modified with PVA and PVP as a novel extracting media for thin film microextraction of bisphenol A from aquatic samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal Chim Acta 2020; 1139:222-240. [DOI: 10.1016/j.aca.2020.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
4
|
Escamilla-Lara KA, Heredia AC, Peña-Alvarez A, Ibarra IS, Barrado E, Rodriguez JA. Magnetic Solid-Phase Extraction Based on Poly 4-Vinyl Pyridine for HPLC-FLD Analysis of Naproxen in Urine Samples. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25122924. [PMID: 32630475 PMCID: PMC7355941 DOI: 10.3390/molecules25122924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
A magnetic solid phase extraction technique followed by liquid chromatography with a fluorescence detector for naproxen analysis in human urine samples was developed. The method includes the extraction of naproxen with a magnetic solid synthetized with magnetite and poly 4-vinylpriridine, followed by the magnetic separation of the solid phase and desorption of the analyte with methanol. Under optimal conditions, the linear range of the calibration curve was 0.05–0.60 μg L−1, with a limit of detection of 0.02 μg L−1. In all cases values of repeatability were lower than 5.0% with recoveries of 99.4 ± 1.3%. Precision and accuracy values are adequate for naproxen (Npx) analysis in urine samples.
Collapse
Affiliation(s)
- Karen A. Escamilla-Lara
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, HGO, Mexico; (K.A.E.-L.); (I.S.I.)
| | - Ana C. Heredia
- Facultad de Quimica, Departamento de Quimica Analitica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 04510, Mexico; (A.C.H.); (A.P.-A.)
| | - Araceli Peña-Alvarez
- Facultad de Quimica, Departamento de Quimica Analitica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 04510, Mexico; (A.C.H.); (A.P.-A.)
| | - Israel S. Ibarra
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, HGO, Mexico; (K.A.E.-L.); (I.S.I.)
| | - Enrique Barrado
- Department of Analytical Chemistry, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Calle Paseo de Belen, 7, 47011 Valladolid, Spain;
| | - Jose A. Rodriguez
- Area Academica de Quimica, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, HGO, Mexico; (K.A.E.-L.); (I.S.I.)
- Correspondence: ; Tel.: +52-771717200 (ext. 2202)
| |
Collapse
|
5
|
Šrámková IH, Horstkotte B, Erben J, Chvojka J, Švec F, Solich P, Šatínský D. 3D-Printed Magnetic Stirring Cages for Semidispersive Extraction of Bisphenols from Water Using Polymer Micro- and Nanofibers. Anal Chem 2020; 92:3964-3971. [DOI: 10.1021/acs.analchem.9b05455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivana H. Šrámková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | - Jakub Erben
- Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Jiří Chvojka
- Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | | | - Dalibor Šatínský
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| |
Collapse
|
6
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|