1
|
Xu F, Yu J, Wu Y. Optimal conditions for determination of bacitracin, bacitracin zinc and bacitracin methylene disalicylate in animal feed by ultra-performance liquid tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124234. [PMID: 38991259 DOI: 10.1016/j.jchromb.2024.124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
An integrated method combining solid-phase extraction (SPE) with ultra-performance liquid tandem mass spectrometry (UPLC-MS/MS) has been established for quantifying bacitracin (BTC), bacitracin zinc (BZ), and bacitracin methylene disalicylate (BMD) in animal feed. A pretreatment procedure that can effectively, quickly, and simultaneously extract and purify BTC, BZ, or BMD in feed was developed for the first time through the optimization of extraction and SPE conditions. After extraction with acetonitrile + methanol + 15 % ammonia solution (1:1:1, v:v:v) and dilution with EDTA solution (1.5 mmol/L, pH 7.0), a SPE procedure was carried out with C18 cartridge. Following LC-MS/MS analysis utilized a Waters Peptide BEH C18 column with a gradient elution of 0.1 % formic acid in water/acetonitrile with. This method demonstrated a strong linear correlation (R2 > 0.9980) across a 0.01-1.0 mg/L concentration span, based on a matrix-matched standard curve. Satisfactory recoveries of BTC (bacitracin A, B1, B2, and B3), BZ, and BMD in different feeds were obtained from 80.7 % to 108.4 %, with relative standard deviations below 15.7 %. Low limits of quantification ranging within 7.2-20 μg/kg were achieved for bacitracin A, B1, B2, and B3. This method provided an effective and reliable detection method to prevent the addition of BTC and different BTC formulations in feeds.
Collapse
Affiliation(s)
- Feng Xu
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiayong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinliang Wu
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, PR China; Ningbo Key Laboratory for Testing and Control for Characteristic Agro-product Quality and Safety, Ningbo 315040, PR China.
| |
Collapse
|
2
|
Lavrukhina OI, Amelin VG, Kish LK, Tretyakov AV, Pen’kov TD. Determination of Residual Amounts of Antibiotics in Environmental Samples and Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Zhou J, Wang Z, Qian W, Liang C, Chen Y, Liu H, Liu Y, Zhu X, Wang A. Quantum dot-based fluorescence immunosorbent assay for the rapid detection of bacitracin zinc in feed samples. LUMINESCENCE 2022; 37:1300-1308. [PMID: 35637545 DOI: 10.1002/bio.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bacitracin zinc (BAC), a polypeptide antibiotic, is utilized as a feed additive due to its ability to promote growth in animals. However, the abuse of BAC can lead to a great threat to food safety. Therefore, there is an urgent need to develop a rapid and sensitive detection method. In this study, a monoclonal antibody (mAb) against BAC with excellent sensitivity and specificity was obtained. For the first time, quantum dots (QDs) were conjugated with the prepared mAb against BAC and rabbit anti-mouse antibody to fabricate a direct and an indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) to detect BAC. The IC50 of dc-FLISA and ic-FLISA were 0.28 ng/ml and 0.17 ng/ml, respectively. The limits of detection were 0.0016 ng/ml and 0.001 ng/ml, respectively, and the detection ranges were 0.0016-46.50 ng/ml and 0.001-35.65 ng/ml, respectively. In addition, the recovery rate of the two methods ranged from 93.5% to 112.0%, and the coefficient of variation (CV) was less than 10%. Therefore, the methods developed in this work have the merits of low cost, simple operation, and high sensitivity, which provide an effective analytical tool for BAC residue detection in feed samples.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuoyang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Shen J, Zhao F, Zhu P, Wu F, Chen X, Kang H, Yue Z. Direct determination of nosiheptide residue in animal tissues by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123167. [PMID: 35196626 DOI: 10.1016/j.jchromb.2022.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Because only very weak signals of fragment ions of nosiheptide can be obtained, nosiheptide is usually detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) via the determination of its hydrolyzed degradation product named HMIA in previous studies. The indirect method suffers from several problems, such as complicated samplepreparation, unavailable commercial HMIA, and the risk of the false-positive result by HMIA. However, we found that nosiheptide could produce several significant fragment ions under high collision energy (CE). Therefore, we developed a method for the direct determination of nosiheptide by LC-MS/MS in animal tissues. The sample was extracted with ACN, then degreased with n-hexane, and purified by an HLB solid-phase extraction (SPE) cartridge. After being filtered through the PTFE filter, it was analyzed by LC-MS/MS in selected reaction monitoring (SRM) mode. The influencing factors, such as mobile phase, SPE cartridge, filter material, and matrix effect, were investigated. Nosiheptide showed a good linear relationship (R2 ≥ 0.999) within the concentration range from 0.3 μg/L to 20 μg/L under optimized conditions. The limit of detection (LOD) was 0.3 μg/kg, while the limit of quantification (LOQ) was 1.0 μg/kg in chicken, bovine muscle, swine muscle, and swine liver. The average recoveries at spiked levels of 1.0, 2.0, and 10 μg/kg ranged from 83% to 101%, with the relative standard deviations (RSDs) <12%. Compared with the methods previously reported, our newly developed method was more simple, convenient, and sensitive. Moreover, it was successfully applied for the determination of nosiheptide residue in medicated chicken samples.
Collapse
Affiliation(s)
- Jincan Shen
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Fengjuan Zhao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Pingping Zhu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Fengqi Wu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Xinyi Chen
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Haining Kang
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Zhenfeng Yue
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China; Shenzhen Polytechnic, Shenzhen 518045, China.
| |
Collapse
|
5
|
Parmar JK, Chaubey KK, Gupta V, Bharath MN. Assessment of various veterinary drug residues in animal originated food products. Vet World 2021; 14:1650-1664. [PMID: 34316216 PMCID: PMC8304421 DOI: 10.14202/vetworld.2021.1650-1664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
The veterinary drugs are broad-spectrum antibacterial antibiotics; it uses to cure the animal disease. Many countries have banned veterinary drug residues like nitrofurans metabolites, chloramphenicol. However, the people were administrated veterinary drugs to animals as illegal to increase the milk production in animals for economic benefit. The results of illegally use of veterinary drugs remain as a residue in animal product like milk and it is very harmful to whom consume it cause cancer and allergic for human being which has entered the concern among milk consumers. To control illegal use of veterinary drugs, the government of India has restricted its use in animals. For the identification and confirmation of veterinary drug residues in animal products, analytical techniques such as liquid chromatography and mass spectrometry are available. These are very sophisticated equipments which are available nowadays and their methodologies for the analytical method validation are described by European commission 2002/657/EC. The use of veterinary drugs is a big challenge to effectively identify and authorization of their use. There are so many analytical techniques are using very effectively and taking very less time to protect the consumers from their adverse effects. These techniques take very less time to identify more groups of compounds such as tetracycline, sulfonamides, anthelmintic, and macrolides in single multi-residue method. These methods having validation parameters include system precision, calibration curve, accuracy, limit of detection, and quantification. Therefore, improvement in the existing technologies and accessibility of new screening methodologies will give opportunities for automation that helps in obtaining the results in very less time and improved sensitivity and specificity which contribute to better safety assurance, standard, and quality of various food products of animal origin.
Collapse
Affiliation(s)
- Jagdish Kumar Parmar
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India.,TUV India Pvt. Ltd., Sus Rd, Mulshi, Pune, Maharashtra, India.,EUREKA Analytical Services Pvt. Ltd. 31 Milestone, Main GT Road, Kundli, Sonepat, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India
| | - Vikas Gupta
- TUV India Pvt. Ltd., Sus Rd, Mulshi, Pune, Maharashtra, India
| | - Manthena Nava Bharath
- Department of Biotechnology, GLA University, Chaumuhan, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Li Y, Jin G, Liu L, Kuang H, Xiao J, Xu C. A portable fluorescent microsphere-based lateral flow immunosensor for the simultaneous detection of colistin and bacitracin in milk. Analyst 2021; 145:7884-7892. [PMID: 33016277 DOI: 10.1039/d0an01463j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polypeptide antibiotics colistin (COL) and bacitracin (Baci) are extensively used as veterinary drugs and feedstock additives in the livestock industry, which inevitably causes residues in animal-origin food, which can accelerate human tolerance to antibiotics. In this study, a portable lateral flow immunoassay (LFIA) for the simultaneous determination of COL and Baci residues in milk was developed. The replacement of gold nanoparticles used in the traditional LFIA with fluorescent microspheres (FMs) to label monoclonal antibodies (mAbs) allowed qualitative and quantitative analyses within a few minutes. Based on the principle of competitive binding to FM-labelled mAbs between analytes in samples and fixed antigens on the membrane, the assay provided qualitative cut-off values of 100 and 50 ng mL-1 for Baci and COL in milk samples. Furthermore, a strip reader-based semi-quantitative detection system could detect lower limits of 7.85 and 1.89 ng mL-1 for Baci and COL, respectively. In conclusion, the proposed multiplex LFIA immunosensor provides an auxiliary analytical tool for the rapid and simultaneous screening of COL and Baci in large cohorts of samples.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
Kumar H, Chen BH, Kuca K, Nepovimova E, Kaushal A, Nagraik R, Bhatia SK, Dhanjal DS, Kumar V, Kumar A, Upadhyay NK, Verma R, Kumar D. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals (Basel) 2020; 10:E1892. [PMID: 33081121 PMCID: PMC7602861 DOI: 10.3390/ani10101892] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram-122413, Haryana, India;
| | - Rupak Nagraik
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Anil Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| |
Collapse
|
8
|
Wu IL, Turnipseed SB, Andersen WC, Madson MR. Analysis of peptide antibiotic residues in milk using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1264-1278. [PMID: 32522108 PMCID: PMC11002982 DOI: 10.1080/19440049.2020.1766703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed and validated for the determination of residual peptide antibiotics (bacitracin A, colistin A and B, enramycin A and B, virginiamycin M1 and S1) in bovine milk. LC-HRMS accurate mass data provided the necessary selectivity and sensitivity to quantitate and identify these important antibiotics in milk at residue levels without extensive sample preparation. Milk samples were extracted using 0.3% formic acid in acetonitrile with 0.06% trifluoroacetic acid added to improve peptide recoveries. Sample clean-up was minimal with an aliquot of the extract evaporated and reconstituted in a formic acid/water-acetonitrile mixture and then filtered. LC separation was performed with 0.3% formic acid in the gradient to improve the peak shape and reproducibility of the peptide analytes. A Quadruple-Orbitrap HRMS instrument with full-scan MS1 data collection followed by all-ion-fragmentation was used to obtain the exact mass of the precursor and confirmatory product ions. One advantage of LC-HRMS is that a combination of multiple precursor ions, including different charge states or adducts, can be used for quantification. The method was validated at four concentration levels ranging from 12.5 to 200 ng/g in three types of bovine milk. For bacitracin A, colistins and enramycins, the average recoveries compared to solvent standards ranged between 70% and 120%. Average recoveries for virginiamycin residues in milk extracts were unacceptably high (up to 138%) using solvent standards, but recoveries using matrix-matched calibration were determined to be 90-115%. Matrix effects were found to be less than 25% for the other analytes when internal standard correction was used for the colistins. Intra-day relative standard deviations were generally below 15%. The method detection limits for the peptide antibiotic residues in milk (0.5 to 5.5 ng/g) were well below regulatory levels of concern.
Collapse
Affiliation(s)
- I-Lin Wu
- Animal Drugs Research Center, U.S. Food and Drug Administration, Denver Federal Center, Denver, CO, USA
| | - Sherri B. Turnipseed
- Animal Drugs Research Center, U.S. Food and Drug Administration, Denver Federal Center, Denver, CO, USA
| | - Wendy C. Andersen
- Animal Drugs Research Center, U.S. Food and Drug Administration, Denver Federal Center, Denver, CO, USA
| | - Mark R. Madson
- Animal Drugs Research Center, U.S. Food and Drug Administration, Denver Federal Center, Denver, CO, USA
- Denver Laboratory, U.S. Food and Drug Administration, Denver Federal Center, Denver, CO, USA
| |
Collapse
|
9
|
Xu X, Wu X, Kuang H, Song S. Gold nanoparticle-based lateral flow strips for rapid and sensitive detection of Virginiamycin M1. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1763262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiaoxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
10
|
Huang W, Qiu Q, Chen M, Shi J, Huang X, Kong Q, Long D, Chen Z, Yan S. Determination of 18 antibiotics in urine using LC-QqQ-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:176-183. [DOI: 10.1016/j.jchromb.2018.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/30/2022]
|