1
|
Lane TR, Koebel DD, Lucas EA, Cleary S, Moyer R, Ekins S. Metabolic Characterization of Sarin, Cyclosarin, and Novichoks (A-230, A-232) in Human Liver Microsomes. Chem Res Toxicol 2025; 38:353-360. [PMID: 39811973 DOI: 10.1021/acs.chemrestox.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability (t1/2 = 1.4 h). The addition of ethylenediaminetetraacetic acid (EDTA), which inhibits paraoxonase-1 (PON1), reduced the metabolism of GB in HLM suggesting at least a partial role in its metabolism (t1/2 = 2.6 h). The absence of NADPH (a requirement for CYP activity) had a major impact on metabolism, suggesting a role of likely CYP-mediated metabolism, which was rescued with the later addition of NADPH at 4 h. GF was also metabolized readily in HLM (Control t1/2 = 9.7 h; HLM t1/2 = 0.5 h), and this metabolism was mitigated by the addition of EDTA (t1/2 (fast) = 0.7 h, t1/2 (slow) = 4.0 h), suggesting a PON1 role in the metabolism of GF. GF in HLMs also showed a reduced metabolism without NADPH, suggesting a CYP-mediated role. We have described for the first time the clearance of A-230 in HLM (t1/2 (fast) = 0.9 h, t1/2 (slow) = 26.5 h), with a significantly decreased stability from the control (t1/2 = 48.3 h) and with the formation of the A-230 acid as the major metabolite. EDTA also reduced the metabolism of A-230 in HLMs (t1/2 (fast) = 0.8 h, t1/2 (slow) = 62 h). A-232 metabolism was also HLM-dependent (t1/2 (fast) = 1.2 h, t1/2 (slow) = 1190 h), although overall it was dramatically more stable in the control (t1/2 = 2,300 h). The metabolism of A-232 in HLMs also showed some inhibition by EDTA (t1/2 (fast) = 0.5 h, t1/2 (slow) = 1480 h).
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 1730 Varsity Drivef, Suite 360, Raleigh, North Carolina 27606-5228, United States
| | - David D Koebel
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Eric A Lucas
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Sean Cleary
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Robert Moyer
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 1730 Varsity Drivef, Suite 360, Raleigh, North Carolina 27606-5228, United States
| |
Collapse
|
2
|
Kanwischer M, Klintzsch T, Schmale O. Stable Isotope Approach to Assess the Production and Consumption of Methylphosphonate and Its Contribution to Oxic Methane Formation in Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15904-15913. [PMID: 37842867 DOI: 10.1021/acs.est.3c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Recent studies in aquatic environments have indicated that microbial methane production is not limited to strictly anoxic conditions and is widespread in the oxic water column. Based on recent investigations proposing linkage between the microbial turnover of methylphosphonate (MPn) and the widespread methane oversaturation in surface waters, we conducted an MPn/13C-MPn tracer approach that combines liquid chromatography-mass spectrometry and gas chromatography-stable isotope ratio mass spectrometry to assess concentrations of the MPn tracer and its contribution to oxic methane formation. In our study, conducted during summer 2020 in the Baltic Sea, we show that MPn is a potent methanogenic substrate in the surface water. However, we found that MPn was produced within the surface and subthermocline water bodies and that its turnover was not limited to the phosphorus-stressed and cyanobacteria-rich surface water. However, our study revealed that most of the MPn was probably degraded via alternative pathways, not releasing methane. Our assessment indicates that the contribution of the MPn degradation pathway only contributed marginally to oxic methane production at the study site in the Baltic Sea and that a variety of methanogenic pathways are probably responsible for the surface-water methane enrichments.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, D-18119 Rostock, Germany
| | - Thomas Klintzsch
- Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany
- Department for Plant Nutrition, Gießen University, Heinrich-Buff-Ring 26, D-35392 Gießen, Germany
| | - Oliver Schmale
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, D-18119 Rostock, Germany
| |
Collapse
|
3
|
Demers SME, Kuhne WW, Swindle AR, Dick DD, Coopersmith KJ. Quantum Dot-DNA FRET Conjugates for Direct Analysis of Methylphosphonic Acid in Complex Media. ACS OMEGA 2023; 8:23017-23023. [PMID: 37396263 PMCID: PMC10308513 DOI: 10.1021/acsomega.3c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Rapid detection of nerve agents from complex matrices with minimal sample preparation is essential due to their high toxicity and bioavailability. In this work, quantum dots (QDs) were functionalized with oligonucleotide aptamers that specifically targeted a nerve agent metabolite, methylphosphonic acid (MePA). These QD-DNA bioconjugates were covalently linked to quencher molecules to form Förster resonance energy transfer (FRET) donor-acceptor pairs that quantitatively measure the presence of MePA. Using the FRET biosensor, the MePA limit of detection was 743 nM in artificial urine. A decrease in the QD lifetime was measured upon DNA binding and was recovered with MePA. The biosensor's flexible design makes it a strong candidate for the rapid detection of chemical and biological agents for deployable, in-field detectors.
Collapse
|
4
|
Huang WC, Chen HR. Application of Cotton Swab-Ag Composite as Flexible Surface-Enhanced Raman Scattering Substrate for DMMP Detection. Molecules 2023; 28:molecules28020520. [PMID: 36677579 PMCID: PMC9860652 DOI: 10.3390/molecules28020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
It is both important and required to quickly and accurately detect chemical warfare agents, such as the highly toxic nerve agent sarin. Surface-enhanced Raman scattering (SERS) has received considerable attention due to its rapid results, high sensitivity, non-destructive data acquisition, and unique spectroscopic fingerprint. In this work, we successfully prepared SERS cotton swabs (CSs) for the detection of the sarin simulant agent dimethyl methyl phosphonate (DMMP) by anchoring N1-(3-trimethoxysilylpropyl) diethylenetriamine (ATS)/silver nanoparticle (AgNP) nanocomposites on CSs using ATS as the stabilizer and coupling agent. Simultaneously, the binding mode and reaction mechanics between the AgNP, ATS, and CS were confirmed by XPS. The modified CSs exhibited good uniformity, stability, and adsorption capability for SERS measurements, enabling the adsorption and detection of DMMP residue from an irregular surface via a simple swabbing process, with a detection limit of 1 g/L. The relative standard deviations (RSDs) of RSD710 = 5.6% had high reproducibility. In this research, the fabrication method could easily be extended to other cellulose compounds, such as natural fibers and paper. Furthermore, the versatile SERS CSs can be used for the on-site detection of DMMP, particularly in civil and defense applications, to guarantee food security and the health of the population.
Collapse
|
5
|
A Modified QuEChERS-DART-MS/MS Technique for High-Throughput Detection of Organophosphate Nerve Agent Hydrolysis Products in Environmental Samples. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Bouchouareb K, Combès A, Pichon V. Determination of nerve agent biomarkers in human urine by a natural hydrophobic deep eutectic solvent-parallel artificial liquid membrane extraction technique. Talanta 2022; 249:123704. [PMID: 35738205 DOI: 10.1016/j.talanta.2022.123704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Alkyl methyl phosphonic acids (AMPAs) are the major metabolites of organophosphorus nerve agents. A method based on the use of natural hydrophobic deep eutectic solvents as supported liquid membrane in parallel artificial liquid microextraction (PALME) combined with LC-MS/MS analysis was developed and applied to their extraction from urine samples. PALME is a miniaturized liquid-phase extraction method performed in a multiwell plate format where the aqueous sample and the aqueous acceptor phase are separated by a flat membrane impregnated with an organic solvent. In this study, we investigated the possibility of replacing the harmful conventional organic solvent by an emerging green solvent, a coumarin/thymol-based deep eutectic solvent, in ordered to raise the greenness of the sample preparation method. Linear response was obtained in an interval of 0.5, 5 or 10-100 ng/ml depending on the AMPAs with a determination coefficients (R2s) ranging from 0.9751 to 0.9989 for their determination in not treated urine samples. Enrichment factors (EFs) up to 12.65 were obtained, and repeatability was within 8.90-16.28% RSD (n = 12). The limit of quantifications (LOQs: S/N ≥ 10) of the whole analytical procedure were in the range from 0.04 to 5.35 ng/ml. In addition to its good sensitivity, the presented method permitted the treatment of 192 samples in 120 min (equivalent to 37.5 s/sample), which places it as one of the most powerful preparation technique for biomonitoring of civilian or military people exposed to nerve agents in case of public health emergency. Indeed, the developed procedure combined sensitivity, high-throughput, greenness, simplicity and practicality for the determination of five acidic polar AMPAs in urine samples.
Collapse
Affiliation(s)
- Khirreddine Bouchouareb
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Campus UPMC, Paris, France.
| |
Collapse
|
7
|
Omidi N, Barzegar F, Abedi AS, Kamankesh M, Ghanati K, Mohammadi A. Response Surface Methodology of Quantitative of Heterocyclic Aromatic Amines in Fried Fish Using Efficient Microextraction Method Coupled with High-Performance Liquid Chromatography: Central Composite Design. J Chromatogr Sci 2021; 59:473-481. [PMID: 33529315 DOI: 10.1093/chromsci/bmaa137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/14/2022]
Abstract
Meat and meat products are indispensable part of our diet. Heat processing of these tasty foods such as fried fish causes to form heterocyclic aromatic amines (HAAs). The sources of heating have directly affected on the level and type of HAAs. In this research, 2-amino-1-methyl-6-phenylimidazo [4'5-b] pyridine (PhIP), 2-amino-3-methylimidazo [4,5-f]quinolone (IQ), 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ) and 2-amino-3,4-dimethylimidazo [4,5-f] quinoxaline (MeIQx) were determined using an efficient analytical methodology coupled with high-performance liquid chromatography. The effective parameters were optimized by central composite design. The results of this survey demonstrated that rang of relative standard deviation were between 4.5 and 8.2, extraction recoveries were obtained 86-97% and limits of detection were between 0.40 and 0.63 for 4 HAAs. The amounts of HAAs found in 20 different fried fish samples were between 0 and 4.8 ng g-1. PhIP with 1.57 ng g-1 and MeIQ with 2.08 ng g-1 have the lowest and highest average level of HAAs, respectively.
Collapse
Affiliation(s)
- Narges Omidi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Barzegar
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdol-Samad Abedi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kiandokht Ghanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
9
|
Bu L, Guo L, Xie J. An in situ assay of nerve agents enabled by a self-assembled bienzymatic electrochemical biosensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj00929f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new self-assembled bienzymatic electrochemical biosensor is proposed to in situ detect NAs and readily investigate the inhibition processes of NAs using a single step protocol.
Collapse
Affiliation(s)
- Lijuan Bu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| |
Collapse
|