1
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
2
|
Li S, Xu N, Fang Q, Cheng X, Chen J, Liu P, Li L, Wang C, Liu W. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116831. [PMID: 37369334 DOI: 10.1016/j.jep.2023.116831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glehnia littoralis Fr. Schmidtex Miq. is a well-known perennial herb that is used in traditional medicine in China, Japan and Korea. G. littoralis has the effects of treating the lungs with heat, nourishing yin and blood, and acting as an expectorant. Traditional Chinese medicine (TCM) prescriptions containing G. littoralis have various clinical applications, such as clearing heat, relieving coughs, treating hepatic fibrosis, resolving phlegm, and treating esophagitis. AIM OF THE REVIEW This paper aims to provide a comprehensive and productive review of G. littoralis, mainly including traditional application, ethnopharmacology, chemical composition, pharmacological activities, and quality control. MATERIALS AND METHODS Literature search was conducted through the Web of Science, ScienceDirect, Springer Link, PubMed, Baidu Scholar, CNKI, and WanFang DATA by using the keywords "Glehnia littoralis", "Radix Glehniae", "Bei Shashen", "Clinical application", "Chemical composition", "Quality control" and "pharmacological action". In addition, information was collected from relevant ancient books, reviews, and documents (1980-2022). RESULTS G. littoralis is a traditional Chinese herbal medicine with great clinical value and rich resources. More than 186 components, including coumarins, lignans, polyacetylenes, organic acids, flavonoids, and terpenoids, have been isolated and identified from G. littoralis. The pharmacological activities of more than half of these chemicals are yet unknown. Polyacetylenes and coumarins are the most important bioactive compounds responsible for pharmacological activities, such as antiproliferative, anti-oxidation, anti-inflammatory, antibacterial, antitussive, immune regulation and analgesic. In this study, the progress in chemical analysis of G. littoralis, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (MS), and HPLC-MS, were summarized. CONCLUSION In this paper reviewed the previous literature regarding ethnopharmacological, phytochemical, pharmacological, and quality evaluation of the processing of G. littoralis was reviewed, providing potential reference information for future investigation and clinical applications. However, research on the relationship between chemical constituents and traditional uses of G. littoralis is lacking, and the comprehensive pharmacological effects and mechanisms of G. littoralis require further detailed exploration. In addition, an efficient method for chemical profiling is still unavailable to obtain potent bioactive markers for quality control. Perfect quality standards, which are also the basis for further drug development of G. littoralis, are urgently needed to ensure its quality and clinical application.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Nan Xu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Qinqin Fang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Li Li
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Changhong Wang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Wei Liu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Dresler S, Bogucka-Kocka A, Kováčik J, Kubrak T, Strzemski M, Wójciak-Kosior M, Rysiak A, Sowa I. Separation and determination of coumarins including furanocoumarins using micellar electrokinetic capillary chromatography. Talanta 2018; 187:120-124. [PMID: 29853023 DOI: 10.1016/j.talanta.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022]
Abstract
The conditions of micellar electrokinetic capillary chromatography for separation and simultaneous measurement of coumarins (coumarin, scoparone, isoscopoletin, esculin, esculetin, umbelliferone) including furanocoumarins (xanthotoxin, byakangelicin, isopimpinellin, bergapten, phellopterin, xanthotoxol) have been elaborated. The influence of different parameters, such as the pH of the buffer, sodium cholate (SC) or methanol concentration in the buffer, on the migration time, peak resolution, peak asymmetry, and number of theoretical plates was investigated. The optimum separation of the compounds was achieved using 50-µm i.d. capillaries with a total length of 64.5 cm (56 cm effective length) and a buffer system at pH 9.00 consisting of 50 mM sodium tetraborate, 45 mM SC, and 20% of methanol (v/v). The developed method ensured good repeatability of corrected peak areas and migration times (the relative standard deviations were in the range of 2.8-6.1% and 0.8-4.0%, respectively). The average limit of detection for all studied compounds was below 1.3 µg mL. Moreover, good linearity of the relationship between the peak corrected area and the concentration of the compounds was observed (correlation coefficient >0.99). The method was successfully applied in the quantitative analysis of two different types of samples, i.e. Heracleum sphondylium herb and Aesculus hippocastanum cortex.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4a, 20-094 Lublin, Poland
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic
| | - Tomasz Kubrak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalen Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Rysiak
- Department of Ecology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Simultaneous analysis of seven marker compounds from Saposhnikoviae Radix, Glehniae Radix and Peucedani Japonici Radix by HPLC/PDA. Arch Pharm Res 2016; 39:695-704. [PMID: 27016947 DOI: 10.1007/s12272-016-0740-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
A new combination of high performance liquid chromatography (HPLC) method coupled with photodiode array (PDA) analysis has been developed for the simultaneous quantitative determination of seven major components in Saposhnikoviae Radix (SR), Glehniae Radix (GR) and Peucedani Japonici Radix (PR), namely peucedanol 7-O-β-D-glucopyranoside (1), prim-O-glucosylcimifugin (2), cimifugin (3), 4'-O-β-D-glucosyl-5-O-methylvisamminol (4), bergapten (5), sec-O-glucosylhamaudol (6), and imperatorin (7). Clear separation of these seven components were achieved on a Phenomenex Kinetex C18 (250 × 4.6 mm, 5 μm) column by gradient elution of water (A) and methanol (B) as mobile phase. The flow rate was 1.0 mL/min and the UV detector wavelength was set at 254 nm. The method was successfully used in the analysis of SR, GR, and PR with relatively simple conditions and procedures, and the results were satisfactory for linearity, recovery, precision, accuracy, stability and robustness. The results indicate that the established HPLC/PDA method is suitable for the classification of SR, GR, and PR.
Collapse
|
5
|
Huo H, Jia P, Zhang X, Zhang Z, Yang H, Zhang Q, Shi H, Zhang L. Tentative identification of new metabolites of cnidilin by liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 995-996:85-92. [DOI: 10.1016/j.jchromb.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022]
|
6
|
Zhou Y, Liu X, Chen F, Zhang F. Simultaneous quantitative determination of eight index constituents and compatibility changes in Longchai Decoction by UPLC–Q-TOF-MS. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|