1
|
Smith N, Keynan Y, Wuerz T, Sharma A. Powassan Virus Encephalitis after Tick Bite, Manitoba, Canada. Emerg Infect Dis 2024; 30:1959-1961. [PMID: 39122440 PMCID: PMC11346980 DOI: 10.3201/eid3009.231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
A case of Powassan encephalitis occurred in Manitoba, Canada, after the bite of a black-legged tick. Awareness of this emerging tickborne illness is needed because the number of vector tick species is growing. No specific treatment options exist, and cases with illness and death are high. Prevention is crucial.
Collapse
|
2
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
3
|
Gnanaprakasam R, Wormser GP, Keller M. Background seropositivity to Jamestown Canyon virus can lead to diagnostic confusion. Diagn Microbiol Infect Dis 2024; 108:116161. [PMID: 38219377 DOI: 10.1016/j.diagmicrobio.2023.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Background seropositivity rates for specific antibodies to Jamestown Canyon Virus (JCV) can exceed 25 % in certain geographic areas in the United States. This can potentially lead to diagnostic confusion, as apparently illustrated by a patient from New Jersey with Powassan virus encephalitis, who also tested positive for antibodies to JCV.
Collapse
Affiliation(s)
- Rachel Gnanaprakasam
- Infectious Diseases, Westchester Medical Center, 100 Woods Road, Valhalla, New York, 10595 USA
| | - Gary P Wormser
- New York Medical College, 40 Sunshine Cottage Road, Valhalla, New York, 10595, USA
| | - Marina Keller
- Infectious Diseases, Westchester Medical Center, 100 Woods Road, Valhalla, New York, 10595 USA; New York Medical College, 40 Sunshine Cottage Road, Valhalla, New York, 10595, USA.
| |
Collapse
|
4
|
Kakoullis L, Vaz VR, Kaur D, Kakoulli S, Panos G, Chen LH, Behlau I. Powassan Virus Infections: A Systematic Review of Published Cases. Trop Med Infect Dis 2023; 8:508. [PMID: 38133440 PMCID: PMC10747444 DOI: 10.3390/tropicalmed8120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Powassan virus is an emerging neurotropic arbovirus transmitted by the tick Ixodes scapularis. This systematic review was conducted to aggregate data on its clinical manifestations, diagnostic findings, and complications. METHODS PubMed was searched until August 2023 using the term "Powassan", to identify all published cases of Powassan virus infections, as per PRISMA guidelines. RESULTS Among the 380 abstracts identified, 45 studies describing 84 cases (70 adult, 14 pediatric) were included. Cases were reported from the USA and Canada. Complications included paralysis in 44.1% of adult and 42.6% of pediatric cases, cognitive deficits in 33.3% of adult and 25% of pediatric cases, while the mortality rate was 19.1% and 7.1% in the adult and pediatric populations, respectively. Correlation analysis revealed an association between mortality and age (r = 0.264, p = 0.029), development of paralysis (r = 0.252, p = 0.041), or respiratory distress or failure (r = 0.328, p = 0.006). Factors associated with persistent neurological deficits were development of ataxia (r = 0.383, p = 0.006), paralysis (r = 0.278, p = 0.048), speech disorder (r = 0.319, p = 0.022), and cranial nerve involvement (r = 0.322, p = 0.017). Other significant correlations included those between speech disorders and ataxia (r = 0.526, p < 0.001), and between paralysis and respiratory distress or failure (r = 0.349, p = 0.003). CONCLUSION Powassan virus infections have significant morbidity and mortality and should be suspected in cases of encephalitis and possible tick exposure. PROSPERO registration number: CRD42023395991.
Collapse
Affiliation(s)
- Loukas Kakoullis
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victor Renault Vaz
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Divmehar Kaur
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Kakoulli
- Medical School, University of Groningen, 9712 Groningen, The Netherlands
| | - George Panos
- Division of Infectious Diseases, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Lin H. Chen
- Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases and Travel Medicine, Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
| | - Irmgard Behlau
- Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases and Travel Medicine, Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Molecular Biology and Microbiology and Ophthalmology, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Telford SR, Piantadosi AL. Powassan virus persistence after acute infection. mBio 2023; 14:e0071223. [PMID: 37338444 PMCID: PMC10470498 DOI: 10.1128/mbio.00712-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Survivors of Powassan encephalitis often have persistent neurological disease. A new mouse model replicates some elements of the human disease and demonstrates the presence of viral RNA in the brain as well as myelitis more than 2 mo after the acute infection. The related tick-borne encephalitis and West Nile Neuroinvasive Disease (WNND) also have common neurological sequelae, and models for these better-studied diseases provide evidence for prolonged virus, RNA, and inflammation in some cases, in addition to damage from the acute encephalitic disease. A better understanding of the biological basis for persistent signs and symptoms after Powassan encephalitis, currently a rare disease, could benefit from further studies of the more prevalent flaviviral encephalitides.
Collapse
Affiliation(s)
- Sam R. Telford
- Department of Infectious Disease and Global Health; Tufts Lyme Disease Initiative, Tufts University, North Grafton, Massachusetts, USA
| | - Anne L. Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Conde JN, Himmler GE, Mladinich MC, Setoh YX, Amarilla AA, Schutt WR, Saladino N, Gorbunova EE, Salamango DJ, Benach J, Kim HK, Mackow ER. Establishment of a CPER reverse genetics system for Powassan virus defines attenuating NS1 glycosylation sites and an infectious NS1-GFP11 reporter virus. mBio 2023; 14:e0138823. [PMID: 37489888 PMCID: PMC10470542 DOI: 10.1128/mbio.01388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yin Xiang Setoh
- Microbiology and Molecular Epidemiology Division, Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Eisen L. Tick species infesting humans in the United States. Ticks Tick Borne Dis 2022; 13:102025. [PMID: 35973261 PMCID: PMC10862467 DOI: 10.1016/j.ttbdis.2022.102025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
The data for human tick encounters in the United States (US) presented in this paper were compiled with the goals of: (i) presenting quantitative data across the full range of native or recently established human biting ixodid (hard) and argasid (soft) tick species with regards to their frequency of infesting humans, based on published records of ticks collected while biting humans or crawling on clothing or skin; and (ii) providing a guide to publications on human tick encounters. Summary data are presented in table format, and the detailed data these summaries were based on are included in a set of Supplementary Tables. To date, totals of 36 ixodid species (234,722 specimens) and 13 argasid species (230 specimens) have been recorded in the published literature to infest humans in the US. Nationally, the top five ixodid species recorded from humans were the blacklegged tick, Ixodes scapularis (n=158,008 specimens); the lone star tick, Amblyomma americanum (n=36,004); the American dog tick, Dermacentor variabilis (n=26,624); the western blacklegged tick, Ixodes pacificus (n=4,158); and the Rocky Mountain wood tick, Dermacentor andersoni (n=3,518). Additional species with more than 250 ticks recorded from humans included Ixodes cookei (n=2,494); the Pacific Coast tick, Dermacentor occidentalis (n=809); the brown dog tick, Rhipicephalus sanguineus sensu lato (n=714); the winter tick, Dermacentor albipictus (n=465); and the Gulf Coast tick, Amblyomma maculatum (n=335). The spinose ear tick, Otobius megnini (n=69), and the pajaroello tick, Ornithodoros coriaceus (n=55) were the argasid species most commonly recorded from humans. Additional information presented for each of the 49 tick species include a breakdown of life stages recorded from humans, broad geographical distribution in the US, host preference, and associated human pathogens or medical conditions. The paper also provides a history of publications on human tick encounters in the US, with tables outlining publications containing quantitative data on human tick encounters as well as other notable publications on human-tick interactions. Data limitations are discussed. Researchers and public health professionals in possession of unpublished human tick encounter data are strongly encouraged to publish this information in peer-reviewed scientific journals. In future papers, it would be beneficial if data consistently were broken down by tick species and life stage as well as host species and ticks found biting versus crawling on clothing or skin.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
8
|
Kamaraj C, Gandhi PR, Chandra Satish Kumar R, Balasubramani G, Malafaia G. Biosynthesis and extrinsic toxicity of copper oxide nanoparticles against cattle parasites: An eco-friendly approach. ENVIRONMENTAL RESEARCH 2022; 214:114009. [PMID: 36027957 DOI: 10.1016/j.envres.2022.114009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts' ability to collect metals and decrease metal ions makes them a superior candidate for the biosynthesis of nanoparticles; hence, they are referred to as bio-nano factories since both living and dead dried biomass are employed to produce metallic nanoparticles. The antiparasitic activity of biosynthesized copper oxide nanoparticles (CuO NPs) was examined against cow tick larvae (Rhipicephalus microplus, Haemaphysalis bispinosa, and Hippobosca maculata). These parasitic larvae were treated with various concentrations of methanolic leaf extract of A. marmelos (MLE-AM) and biosynthesized CuO NPs for 24 h. CuO NPs were synthesized quickly using A. marmelos leaf extract, and nanoparticle synthesis was identified within 15 min. The results from characteristic XRD, FTIR, SEM, EDX, and TEM analyses confirmed the biosynthesis of CuO NPs. The presence of 26-Hydroxycholesterol was discovered as the predominant chemical present in the GC-MS analysis of MLE-AM. The maximum efficacy was observed in biosynthesized CuO NPs against R. microplus larvae, H. bispinosa adults, and Hip. maculata larvae (LC50 = 4.30, 9.50, and 11.13 mg/L; and LC90 = 8.30, 19.57, and 21.65 mg/L; and 6.219, 6.547, and 2.587). Overall, the bio-fabrication of CuO NPs has the potential to develop better and safer antiparasitic control techniques.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Pachiyappan Rajiv Gandhi
- Division of Nano-biotechnology, Department of Zoology, Auxilium College (Autonomous), Gandhi Nagar, 632 006, Vellore District, Tamil Nadu, India.
| | - Rajappan Chandra Satish Kumar
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Head - Drug Testing Laboratory (Indian Medicine), S.R.M. Institute of Science & Technology, Chengalpattu, 603 203, Tamil Nadu, India.
| | - Govindasamy Balasubramani
- Department of Research and Innovation, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Abstract
Powassan virus is an increasingly recognized cause of severe encephalitis that is transmitted by Ixodes ticks. Given the nonspecific clinical, laboratory, and imaging features of Powassan virus disease, providers should consider it in patients with compatible exposures and request appropriate testing.
Collapse
Affiliation(s)
- Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, AL360U.2, Boston, MA 02115, USA
| |
Collapse
|
10
|
Conde JN, Sanchez-Vicente S, Saladino N, Gorbunova EE, Schutt WR, Mladinich MC, Himmler GE, Benach J, Kim HK, Mackow ER. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J Virol 2022; 96:e0168221. [PMID: 34643436 PMCID: PMC8754205 DOI: 10.1128/jvi.01682-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFN-β) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-β secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University New York, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Hassett EM, Thangamani S. Ecology of Powassan Virus in the United States. Microorganisms 2021; 9:microorganisms9112317. [PMID: 34835443 PMCID: PMC8624383 DOI: 10.3390/microorganisms9112317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
Zoonotic viruses threaten the lives of millions of people annually, exacerbated by climate change, human encroachment into wildlife habitats, and habitat destruction. The Powassan virus (POWV) is a rare tick-borne virus that can cause severe neurological damage and death, and the incidence of the associated disease (Powassan virus disease) is increasing in the eastern United States. The mechanisms by which POWV is maintained in nature and transmitted to humans are complex and only partly understood. This review provides an overview of what is known about the vector species, vector-host transmission dynamics, and environmental and human-driven factors that may be aiding the spread of both the vector and virus.
Collapse
|