1
|
Kwon JH, Advani SD, Branch-Elliman W, Braun BI, Cheng VCC, Chiotos K, Douglas P, Gohil SK, Keller SC, Klein EY, Krein SL, Lofgren ET, Merrill K, Moehring RW, Monsees E, Perri L, Scaggs Huang F, Shelly MA, Skelton F, Spivak ES, Sreeramoju PV, Suda KJ, Ting JY, Weston GD, Yassin MH, Ziegler MJ, Mody L. A call to action: the SHEA research agenda to combat healthcare-associated infections. Infect Control Hosp Epidemiol 2024; 45:1-18. [PMID: 39448369 PMCID: PMC11518679 DOI: 10.1017/ice.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Jennie H. Kwon
- Washington University School of Medicine in St. Louis, St. Louis, MI, USA
| | | | - Westyn Branch-Elliman
- VA Boston Healthcare System, VA National Artificial Intelligence Institute (NAII), Harvard Medical School, Boston, MA, USA
| | | | | | - Kathleen Chiotos
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peggy Douglas
- Washington State Department of Health, Seattle, WA, USA
| | - Shruti K. Gohil
- University of California Irvine School of Medicine, UCI Irvine Health, Irvine, CA, USA
| | - Sara C. Keller
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eili Y. Klein
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah L. Krein
- VA Ann Arbor Healthcare System, University of Michigan, Ann Arbor, MI, USA
| | - Eric T. Lofgren
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | | | | | - Elizabeth Monsees
- Children’s Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MI, USA
| | - Luci Perri
- Infection Control Results, Wingate, NC, USA
| | - Felicia Scaggs Huang
- University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mark A. Shelly
- Geisinger Commonwealth School of Medicine, Danville, PA, USA
| | - Felicia Skelton
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Emily S. Spivak
- University of Utah Health, Salt Lake City Veterans Affairs Healthcare System, Salt Lake City, UT, USA
| | | | - Katie J. Suda
- University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | | | | - Mohamed H. Yassin
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J. Ziegler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lona Mody
- University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Boyce JM. Hand and environmental hygiene: respective roles for MRSA, multi-resistant gram negatives, Clostridioides difficile, and Candida spp. Antimicrob Resist Infect Control 2024; 13:110. [PMID: 39334403 PMCID: PMC11437781 DOI: 10.1186/s13756-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Healthcare-associated infections (HAIs) caused by multidrug-resistant organisms (MDROs) represent a global threat to human health and well-being. Because transmission of MDROs to patients often occurs via transiently contaminated hands of healthcare personnel (HCP), hand hygiene is considered the most important measure for preventing HAIs. Environmental surfaces contaminated with MDROs from colonized or infected patients represent an important source of HCP hand contamination and contribute to transmission of pathogens. Accordingly, facilities are encouraged to adopt and implement recommendations included in the World Health Organization hand hygiene guidelines and those from the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America/Association for Professionals in Infection Control and Epidemiology. Alcohol-based hand rubs are efficacious against MDROs with the exception of Clostridiodes difficile, for which soap and water handwashing is indicated. Monitoring hand hygiene adherence and providing HCP with feedback are of paramount importance. Environmental hygiene measures to curtail MDROs include disinfecting high-touch surfaces in rooms of patients with C. difficile infection daily with a sporicidal agent such as sodium hypochlorite. Some experts recommend also using a sporicidal agent in rooms of patients colonized with C. difficile, and for patients with multidrug-resistant Gram-negative bacteria. Sodium hypochlorite, hydrogen peroxide, or peracetic acid solutions are often used for daily and/or terminal disinfection of rooms housing patients with Candida auris or other MDROs. Products containing only a quaternary ammonium agent are not as effective as other agents against C. auris. Portable medical equipment should be cleaned and disinfected between use on different patients. Detergents are not recommended for cleaning high-touch surfaces in MDRO patient rooms, unless their use is followed by using a disinfectant. Facilities should consider using a disinfectant instead of detergents for terminal cleaning of floors in MDRO patient rooms. Education and training of environmental services employees is essential in assuring effective disinfection practices. Monitoring disinfection practices and providing personnel with performance feedback using fluorescent markers, adenosine triphosphate assays, or less commonly cultures of surfaces, can help reduce MDRO transmission. No-touch disinfection methods such as electrostatic spraying, hydrogen peroxide vapor, or ultraviolet light devices should be considered for terminal disinfection of MDRO patient rooms. Bundles with additional measures are usually necessary to reduce MDRO transmission.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 214 Hudson View Terrace, Hyde Park, NY, USA.
| |
Collapse
|
3
|
Lee M, Park SW, Bang J, Lee E. Impact of medical waste bin on contamination of patient's environment: An experimental study. Am J Infect Control 2024; 52:958-963. [PMID: 38588979 DOI: 10.1016/j.ajic.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Medical waste bins are a potential source of microbial contamination in the hospital environment, while there is no clear guidance for the management of them. We aimed to assess the impact of medical waste bins on patient's environment. METHODS This experimental study simulated microbial contamination by performing medical procedures on a patient model with fluorescent lotion. The waste bin was set as initially empty or two-thirds filled with waste, open or with a lid. The percentage of fluorescent-contaminated area in designated patient's environments was analyzed by 2 independent observers. RESULTS Among a total of 120 experiments, the sides of the bins were more contaminated in open-occupied bins compared to open-empty bins and in open-occupied bins compared to lid-occupied bins (median 1.9175% vs 0.0916% [P = .001] and 1.9175% vs 0.0899% [P = .003], respectively). The top of the bedside equipment trolley for preparing medical procedures was more contaminated in lid-occupied bins than open-occupied bins (median 0.0080% vs 0.0040%, P = .013). DISCUSSION In addition to reducing contamination of the bin itself, the manually operated lid had a potential risk of contributing to microbial transmission by contaminating the equipment trolley. CONCLUSIONS Medical waste bins should be kept no more than two-thirds full, and caution should be taken when using the manually operated lid, to avoid cross-contamination.
Collapse
Affiliation(s)
- Minkyeong Lee
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Centre and Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Won Park
- Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Centre and Seoul National University College of Medicine, Seoul, Korea
| | - Jihwan Bang
- Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Centre and Seoul National University College of Medicine, Seoul, Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Centre and Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Kunishima H, Ichiki K, Ohge H, Sakamoto F, Sato Y, Suzuki H, Nakamura A, Fujimura S, Matsumoto K, Mikamo H, Mizutani T, Morinaga Y, Mori M, Yamagishi Y, Yoshizawa S. Japanese Society for infection prevention and control guide to Clostridioides difficile infection prevention and control. J Infect Chemother 2024; 30:673-715. [PMID: 38714273 DOI: 10.1016/j.jiac.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases. St. Marianna University School of Medicine, Japan.
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University Hospital, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Fumie Sakamoto
- Quality Improvement and Safety Center, Itabashi Chuo Medical Center, Japan
| | - Yuka Sato
- Department of Infection Control and Nursing, Graduate School of Nursing, Aichi Medical University, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba School of Medicine and Health Sciences, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases and Chemotherapy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Minako Mori
- Department of Infection Control, Hiroshima University Hospital, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Japan
| | - Sadako Yoshizawa
- Department of Laboratory Medicine/Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Japan
| |
Collapse
|
5
|
Sansom SE, Gussin GM, Schoeny M, Singh RD, Adil H, Bell P, Benson EC, Bittencourt CE, Black S, Del Mar Villanueva Guzman M, Froilan MC, Fukuda C, Barsegyan K, Gough E, Lyman M, Makhija J, Marron S, Mikhail L, Noble-Wang J, Pacilli M, Pedroza R, Saavedra R, Sexton DJ, Shimabukuro J, Thotapalli L, Zahn M, Huang SS, Hayden MK. Rapid Environmental Contamination With Candida auris and Multidrug-Resistant Bacterial Pathogens Near Colonized Patients. Clin Infect Dis 2024; 78:1276-1284. [PMID: 38059527 PMCID: PMC11093678 DOI: 10.1093/cid/ciad752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Environmental contamination is suspected to play an important role in Candida auris transmission. Understanding speed and risks of contamination after room disinfection could inform environmental cleaning recommendations. METHODS We conducted a prospective multicenter study of environmental contamination associated with C. auris colonization at 6 ventilator-capable skilled nursing facilities and 1 acute care hospital in Illinois and California. Known C. auris carriers were sampled at 5 body sites followed by sampling of nearby room surfaces before disinfection and at 0, 4, 8, and 12 hours after disinfection. Samples were cultured for C. auris and bacterial multidrug-resistant organisms (MDROs). Odds of surface contamination after disinfection were analyzed using multilevel generalized estimating equations. RESULTS Among 41 known C. auris carriers, colonization was detected most frequently on palms/fingertips (76%) and nares (71%). C. auris contamination was detected on 32.2% (66/205) of room surfaces before disinfection and 20.5% (39/190) of room surfaces by 4 hours after disinfection. A higher number of C. auris-colonized body sites was associated with higher odds of environmental contamination at every time point following disinfection, adjusting for facility of residence. In the rooms of 38 (93%) C. auris carriers co-colonized with a bacterial MDRO, 2%-24% of surfaces were additionally contaminated with the same MDRO by 4 hours after disinfection. CONCLUSIONS C. auris can contaminate the healthcare environment rapidly after disinfection, highlighting the challenges associated with environmental disinfection. Future research should investigate long-acting disinfectants, antimicrobial surfaces, and more effective patient skin antisepsis to reduce the environmental reservoir of C. auris and bacterial MDROs in healthcare settings.
Collapse
Affiliation(s)
- Sarah E Sansom
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Gabrielle M Gussin
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - Michael Schoeny
- College of Nursing, Rush University Medical Center, Chicago Illinois, USA
| | - Raveena D Singh
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - Hira Adil
- Disease Control Bureau, Chicago Department of Public Health, Chicago Illinois, USA
| | - Pamela Bell
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Ellen C Benson
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Cassiana E Bittencourt
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine California, USA
| | - Stephanie Black
- Disease Control Bureau, Chicago Department of Public Health, Chicago Illinois, USA
| | | | - Mary Carl Froilan
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Christine Fukuda
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Karina Barsegyan
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - Ellen Gough
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Meghan Lyman
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta Georgia, USA
| | - Jinal Makhija
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Stefania Marron
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Lydia Mikhail
- Division of Epidemiology and Assessment, Orange County Health Care Agency, Santa Ana, California, USA
| | - Judith Noble-Wang
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta Georgia, USA
| | - Massimo Pacilli
- Disease Control Bureau, Chicago Department of Public Health, Chicago Illinois, USA
| | - Robert Pedroza
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - Raheeb Saavedra
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - D Joseph Sexton
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta Georgia, USA
| | - Julie Shimabukuro
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine California, USA
| | - Lahari Thotapalli
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| | - Matthew Zahn
- Division of Epidemiology and Assessment, Orange County Health Care Agency, Santa Ana, California, USA
| | - Susan S Huang
- Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine California, USA
| | - Mary K Hayden
- Division of Infectious Diseases, Rush University Medical Center, Chicago Illinois, USA
| |
Collapse
|
6
|
van der Hoeven A, Jansen SJ, Kraakman M, Bekker V, Veldkamp KE, Boers SA, Wessels E, van der Beek MT. Influence of transition from open bay units to single room units in a neonatal intensive care unit on hospital transmission of multi-drug-resistant Enterobacterales. J Hosp Infect 2023; 141:3-8. [PMID: 37611696 DOI: 10.1016/j.jhin.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND It was shown previously that changing the design of a hospital neonatal intensive care unit (NICU) from open bay units (OBUs) to single room units (SRUs) was not associated with a reduction in Gram-negative multi-drug-resistant organism (MDRO) colonization rates. It was therefore hypothesized that colonization mainly occurs vertically, or through parents and healthcare workers, and not through environmental factors, and that transition to SRUs would not decrease the number of clusters of MDROs with an epidemiological link. To investigate this, core-genome multi-locus sequence typing (cgMLST) was applied on MDROs cultured from infants at the study hospital. METHODS This retrospective cohort study included all infants carrying MDROs admitted to the NICU of a tertiary care academic hospital 2 years prior to the transition from OBUs to SRUs in May 2017, and 1.5 years after the transition (2018-2020). RESULTS In total, 55 infants were diagnosed with MDRO carriership. Isolates were available from 49 infants for cgMLST. In the OBU period, one cluster involving four of 20 (20%) infants was identified, and in the SRU period, four clusters involving nine of 29 (31%) infants were identified. It was possible to make an epidemiological link in all four SRU MDRO clusters, but this was not possible for the OBU cluster. In the latter case, transmission from an environmental source on the ward seemed likely. CONCLUSION After transition to SRUs, there was no decrease in the number of clusters of MDROs with an epidemiological link, suggesting that nursing infants in an NICU with an SRU design is not, in itself, protective against the acquisition of MDROs.
Collapse
Affiliation(s)
- A van der Hoeven
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - S J Jansen
- Division of Neonatology, Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Kraakman
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - V Bekker
- Division of Neonatology, Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - K E Veldkamp
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - S A Boers
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - E Wessels
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M T van der Beek
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
7
|
Knobling B, Ulatowski A, Franke G, Belmar Campos C, Büttner H, Klupp EM, Maurer PM, Brill FHH, Knobloch JK. Superiority of manual disinfection using pre-soaked wipes over automatic UV-C radiation without prior cleaning. J Hosp Infect 2023; 140:72-78. [PMID: 37543180 DOI: 10.1016/j.jhin.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND The efficacy of ultraviolet C (UV-C) radiation against a broad spectrum of micro-organisms has been demonstrated in several studies, but differences in the specific doses and the extent of microbial reduction were found. Furthermore, the conditions of laboratory tests differ greatly from reality, such that efficacy achieved in tests may not necessarily be assumed in reality. Consequently, it is important to investigate the effectiveness of UV-C in representative field trials. The aim was therefore to develop and establish a field test to evaluate automatic UV-C in comparison to manual disinfection. METHODS Before and after disinfection, samples were repeatedly collected from naturally highly contaminated surfaces using the swab technique to obtain representative data sets for disinfected and non-disinfected surfaces. Subsequently, the log reduction values (LRV) and the disinfection success were evaluated for UV-C radiation and full compliant manual disinfection using alcohol-based wipes. RESULTS Surfaces that are naturally contaminated with bacteria on a regular and nearly uniform basis have been identified as particularly suitable for field testing. Mean contamination was reduced from 23.3 to 1.98 cfu/cm2 (LRV 0.9) and 29.7 to 0.26 cfu/cm2 (LRV 1.2) for UV-C and manual disinfection, respectively. UV-C disinfection achieved 75.5% successful disinfected surfaces, whereas manual disinfection showed 98.1%. CONCLUSIONS Full compliant manual disinfection showed slightly higher LRVs and disinfection success than automatic UV-C disinfection. Successful, operator-independent UV-C disinfection still has the potential to improve disinfection performance in addition to manual disinfection.
Collapse
Affiliation(s)
- B Knobling
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Ulatowski
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Hamburg, Germany
| | - G Franke
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Belmar Campos
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Büttner
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E M Klupp
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P M Maurer
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Hamburg, Germany
| | - J K Knobloch
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Carling PC, Parry MF, Olmstead R. Environmental approaches to controlling Clostridioides difficile infection in healthcare settings. Antimicrob Resist Infect Control 2023; 12:94. [PMID: 37679758 PMCID: PMC10483842 DOI: 10.1186/s13756-023-01295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
As today's most prevalent and costly healthcare-associated infection, hospital-onset Clostridioides difficile infection (HO-CDI) represents a major threat to patient safety world-wide. This review will discuss how new insights into the epidemiology of CDI have quantified the prevalence of C. difficile (CD) spore contamination of the patient-zone as well as the role of asymptomatically colonized patients who unavoidable contaminate their near and distant environments with resilient spores. Clarification of the epidemiology of CD in parallel with the development of a new generation of sporicidal agents which can be used on a daily basis without damaging surfaces, equipment, or the environment, led to the research discussed in this review. These advances underscore the potential for significantly mitigating HO-CDI when combined with ongoing programs for optimizing the thoroughness of cleaning as well as disinfection. The consequence of this paradigm-shift in environmental hygiene practice, particularly when combined with advances in hand hygiene practice, has the potential for significantly improving patient safety in hospitals globally by mitigating the acquisition of CD spores and, quite plausibly, other environmentally transmitted healthcare-associated pathogens.
Collapse
|
9
|
Popovich KJ, Aureden K, Ham DC, Harris AD, Hessels AJ, Huang SS, Maragakis LL, Milstone AM, Moody J, Yokoe D, Calfee DP. SHEA/IDSA/APIC Practice Recommendation: Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol 2023; 44:1039-1067. [PMID: 37381690 PMCID: PMC10369222 DOI: 10.1017/ice.2023.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023]
Abstract
Previously published guidelines have provided comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format designed to assist acute-care hospitals in implementing and prioritizing efforts to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission and infection. This document updates the "Strategies to Prevent Methicillin-Resistant Staphylococcus aureus Transmission and Infection in Acute Care Hospitals" published in 2014.1 This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA). It is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
Collapse
Affiliation(s)
- Kyle J. Popovich
- Department of Internal Medicine, RUSH Medical College, Chicago, Illinois
| | - Kathy Aureden
- Infection Prevention, Advocate Aurora Health, Downers Grove, Illinois
| | - D. Cal Ham
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anthony D. Harris
- Health Care Outcomes Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amanda J. Hessels
- Columbia School of Nursing, New York, New York
- Hackensack Meridian Health, Edison, New Jersey
| | - Susan S. Huang
- Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, California
| | - Lisa L. Maragakis
- Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Aaron M. Milstone
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia Moody
- Infection Prevention, HCA Healthcare, Nashville, Tennessee
| | - Deborah Yokoe
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, California
- Transplant Infectious Diseases, UCSF Medical Center, San Francisco, California
| | - David P. Calfee
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| |
Collapse
|
10
|
Knobling B, Franke G, Carlsen L, Belmar Campos C, Büttner H, Klupp EM, Maurer PM, Knobloch JK. Phenotypic Variation in Clinical S. aureus Isolates Did Not Affect Disinfection Efficacy Using Short-Term UV-C Radiation. Microorganisms 2023; 11:1332. [PMID: 37317306 PMCID: PMC10223295 DOI: 10.3390/microorganisms11051332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Pigmentation, catalase activity and biofilm formation are virulence factors that cause resistance of Staphylococcus aureus to environmental stress factors including disinfectants. In recent years, automatic UV-C room disinfection gained greater importance in enhanced disinfection procedures to improve disinfection success in hospitals. In this study, we evaluated the effect of naturally occurring variations in the expression of virulence factors in clinical S. aureus isolates on tolerance against UV-C radiation. Quantification of staphyloxanthin expression, catalase activity and biofilm formation for nine genetically different clinical S. aureus isolates as well as reference strain S. aureus ATCC 6538 were performed using methanol extraction, a visual approach assay and a biofilm assay, respectively. Log10 reduction values (LRV) were determined after irradiation of artificially contaminated ceramic tiles with 50 and 22 mJ/cm2 UV-C using a commercial UV-C disinfection robot. A wide variety of virulence factor expression was observed, indicating differential regulation of global regulatory networks. However, no direct correlation with the strength of expression with UV-C tolerance was observed for either staphyloxanthin expression, catalase activity or biofilm formation. All isolates were effectively reduced with LRVs of 4.75 to 5.94. UV-C disinfection seems therefore effective against a wide spectrum of S. aureus strains independent of occurring variations in the expression of the investigated virulence factors. Due to only minor differences, the results of frequently used reference strains seem to be representative also for clinical isolates in S. aureus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johannes K. Knobloch
- Department Infection Prevention and Control, Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (B.K.); (L.C.); (P.M.M.)
| |
Collapse
|
11
|
Dalton PH, Maute C, Hicks JB, Watson HN, Loccisano AE, Kerger BD. Environmental chamber studies of eye and respiratory irritation from use of a peracetic acid-based hospital surface disinfectant. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e71. [PMID: 37113200 PMCID: PMC10127244 DOI: 10.1017/ash.2023.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/29/2023]
Abstract
Objective To characterize personal exposures and measures of eye and respiratory tract irritation in controlled environmental chamber studies of 44 healthy adult volunteers simulating upper-bound use of peracetic acid (PAA)-based surface disinfectant for terminal cleaning of hospital patient rooms. Design Experimental, within-subject, double-blinded cross-over design. Methods Objective and subjective exposure effects were assessed for PAA and its components: acetic acid (AA) and hydrogen peroxide (HP). Deionized water was included as a control. Breathing-zone concentrations of PAA, AA, and HP were assessed for 8 female multiday volunteers (5 consecutive days) and 36 single-day volunteers (32 females and 4 males). Wetted cloths were used to wipe high-touch surfaces for 20 minutes per trial. Also, 15 objective measures of tissue injury or inflammation and 4 subjective odor or irritation scores were assessed. Results Disinfectant trials showed 95th percentile breathing zone concentrations of 101 ppb PAA, 500 ppb AA, and 667 ppb HP. None of the volunteers observed over 75 test days exhibited significant increases in IgE or objective measures of eye and respiratory tract inflammation. Subjective ratings for disinfectant and AA-only trials showed similar increases for odor intensity and nose irritation, with lower ratings for eye and throat irritation. Females were 2.5-fold more likely than males to assign moderate + irritation ratings. Conclusions Simulated upper-bound hospital use of PAA-based disinfectant led to no significant increases in objective markers of tissue injury, inflammation, or allergic sensitization, and no frank signs of eye or respiratory tract irritation.
Collapse
|
12
|
van der Schoor AS, Severin JA, Klaassen CHW, Gommers D, Bruno MJ, Hendriks JM, Voor In 't Holt AF, Vos MC. Environmental contamination with highly resistant microorganisms after relocating to a new hospital building with 100% single-occupancy rooms: A prospective observational before-and-after study with a three-year follow-up. Int J Hyg Environ Health 2023; 248:114106. [PMID: 36621268 DOI: 10.1016/j.ijheh.2022.114106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Inanimate surfaces within hospitals can be a source of transmission for highly resistant microorganisms (HRMO). While many hospitals are transitioning to single-occupancy rooms, the effect of single-occupancy rooms on environmental contamination is still unknown. We aimed to determine differences in environmental contamination with HRMO between an old hospital building with mainly multiple-occupancy rooms and a new hospital building with 100% single-occupancy rooms, and the environmental contamination in the new hospital building during three years after relocating. METHODS Environmental samples were taken twice in the old hospital, and fifteen times over a three-year period in the new hospital. Replicate Organism Direct Agar Contact-plates (RODACs) were used to determine colony forming units (CFU). Cotton swabs premoistened with PBS were used to determine presence of methicillin-resistant Staphylococcus aureus, carbapenemase-producing Pseudomonas aeruginosa, highly resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. All identified isolates were subjected to whole genome sequencing (WGS) using Illumina technology. RESULTS In total, 4993 hospital sites were sampled, 724 in the old and 4269 in the new hospital. CFU counts fluctuated during the follow-up period in the new hospital building, with lower CFU counts observed two- and three years after relocating, which was during the COVID-19 pandemic. The CFU counts in the new building were equal to or surpassed the CFU counts in the old hospital building. In the old hospital building, 24 (3.3%) sample sites were positive for 49 HRMO isolates, compared to five (0.1%) sample sites for seven HRMO isolates in the new building (P < 0.001). In the old hospital, 89.8% of HRMO were identified from the sink plug. In the new hospital, 71.4% of HRMO were identified from the shower drain, and no HRMO were found in sinks. DISCUSSION Our results indicate that relocating to a new hospital building with 100% single-occupancy rooms significantly decreases HRMO in the environment. Given that environmental contamination is an important source for healthcare associated infections, this finding should be taken into account when considering hospital designs for renovations or the construction of hospitals.
Collapse
Affiliation(s)
- Adriënne S van der Schoor
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johanna M Hendriks
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Mitigating hospital-onset Clostridioides difficile: The impact of an optimized environmental hygiene program in eight hospitals. Infect Control Hosp Epidemiol 2023; 44:440-446. [PMID: 35718355 PMCID: PMC10015263 DOI: 10.1017/ice.2022.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To evaluate the impact of a standardized, process-validated intervention utilizing daily hospital-wide patient-zone sporicidal disinfectant cleaning on incidence density of healthcare-onset Clostridioides difficile infection (HO-CDI) standardized infection ratios (SIRs). DESIGN Multi-site, quasi-experimental study, with control hospitals and a nonequivalent dependent variable. SETTING The study was conducted across 8 acute-care hospitals in 6 states with stable endemic HO-CDI SIRs. METHODS Following an 18-month preintervention control period, each site implemented a program of daily hospital-wide sporicidal disinfectant patient zone cleaning. After a wash-in period, thoroughness of disinfection cleaning (TDC) was monitored prospectively and optimized with performance feedback utilizing a previously validated process improvement program. Mean HO-CDI SIRs were calculated by quarter for the pre- and postintervention periods for both the intervention and control hospitals. We used a difference-in-differences analysis to estimate the change in the average HO-CDI SIR and HO-CAUTI SIR for the pre- and postintervention periods. RESULTS Following the wash-in period, the TDC improved steadily for all sites and by 18 months was 93.6% for the group. The mean HO-CDI SIRs decreased from 1.03 to 0.6 (95% CI, 0.13-0.75; P = .009). In the adjusted difference-in-differences analysis in comparison to controls, there was a 0.55 reduction (95% CI, -0.77 to -0.32) in HO-CDI (P < .001) or a 50% relative decrease from baseline. CONCLUSIONS This study represents the first multiple-site, quasi-experimental study with control hospitals and a nonequivalent dependent variable to evaluate a 4-component intervention on HO-CDI. Following ongoing improvement in cleaning thoroughness, there was a sustained 50% decrease in HO-CDI SIRs compared to controls.
Collapse
|
14
|
Dadon M, Chedid K, Martin ET, Shaul I, Greiver O, Katz I, Saadon H, Alfaro M, Hod L, Shorbaje A, Braslavsky-Siag A, Moscovici S, Kaye KS, Marchaim D. The impact of bedside wipes in multi-patient rooms: a prospective, crossover trial evaluating infections and survival. J Hosp Infect 2023; 134:50-56. [PMID: 36754289 DOI: 10.1016/j.jhin.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Multidrug-resistant organisms (MDROs) are prevalent on high-touch surfaces in multi-patient rooms. AIM To quantify the impact of hanging single-use cleaning/disinfecting wipes next to each bed. Pre-specified outcomes were: (1) hospital-acquired infections (HAIs), (2) cleaning frequency, (3) MDRO room contamination, (4) new MDRO acquisitions, and (5) mortality. METHODS Clustered randomized crossover trial at Shamir Medical Center, Israel (October 2016 to January 2018). Clusters were randomly assigned to use for cleaning either single-use quaternary ammonium wipes (Clinell) or standard practices (reusable cloths and buckets with bleach). Six-month intervention periods were implemented in alternating sequence, separated by a washout period. Five high-touch surfaces were monitored by fluorescent markers. Study outcomes were compared between periods using generalized estimating equations, Poisson regression, and Cox proportional hazards models. FINDINGS Overall, 7725 patients were included (47,670 person-days), 3793 patients in rooms with intervention cleaning and 3932 patients in rooms with standard practices. During the intervention, there was no significant difference in HAI rates (incidence rate ratio: 1.6; 95% confidence interval (CI): 0.7-3.5; P = 0.3). However, in intervention rooms, the frequency of environmental cleaning was higher (odds ratio: 3.73; 95% CI: 2.0-7.1; P < 0.0001), MDRO environmental contamination rate was insignificantly lower (odds ratio: 0.7; 95% CI: 0.5-1.0; P = 0.06), new MDRO acquisition rate was lower (hazard ratio: 0.4; 95% CI: 0.2-1.0; P = 0.04), and in-hospital mortality rate was lower (incidence rate ratio: 0.8; 95% CI: 0.7-1.0; P = 0.03). CONCLUSION Hanging single-use cleaning/disinfecting wipes next to each bed did not affect the HAI rates but did improve the frequency of cleaning, reduce MDRO environmental contamination, and was associated with reduced incidence of new MDRO acquisitions and reduced mortality. This is a feasible, recommended practice to improve patient outcomes in multi-patient rooms.
Collapse
Affiliation(s)
- M Dadon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - K Chedid
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - E T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - I Shaul
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Greiver
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Saadon
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - M Alfaro
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Hod
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Shorbaje
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - S Moscovici
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - K S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Robert Wood Johnson Medical School, NJ, USA
| | - D Marchaim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| |
Collapse
|
15
|
Kuo SH, Liu TY, Chen TC, Yang CJ, Chen YH. Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1649. [PMID: 36674403 PMCID: PMC9863425 DOI: 10.3390/ijerph20021649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on cleaning. Our study aimed to identify which plastic material is suitable for the coverage of elevator buttons and the optimal intervals for their cleaning. We tested six plastic covers, including polyethylene (PE), polymethylpentene (PMP), polyvinyl chloride (PVD), and polyvinylidene chloride (PVDC) plastic wraps; a thermoplastic polyurethane (TPU) keyboard cover; and a polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) laminating film, which are plastic films. The bioburden on the elevator buttons at different time intervals was measured using an adenosine triphosphate (ATP) bioluminescence assay. Our results show that wraps made of PVDC had superior durability compared with those of PMP, PVC, and PVDC, in addition to the lowest detectable ATP levels among the six tested materials. Regarding different button locations, the highest ATP values were found in door-close buttons followed by door-open, and first-floor buttons after one- and three-hour intervals (p = 0.024 and p < 0.001, respectively). After routine disinfection, the ATP levels of buttons rapidly increased after touching and became more prominent after three hours (p < 0.05). Our results indicate that PVDC plastic wraps have adequate durability and the lowest residual bioburden when applied as covers for elevator buttons. Door-close and -open buttons were the most frequently touched sites, requiring more accurate and precise disinfection; therefore, cleaning intervals of no longer than three hours may be warranted.
Collapse
Affiliation(s)
- Shin-Huei Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Road, Kaohsiung 80145, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Tzu-Yin Liu
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Road, Kaohsiung 80145, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Road, Kaohsiung 80145, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Road, Kaohsiung 80145, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Chih-Jen Yang
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, No. 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
| |
Collapse
|
16
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
A randomized trial of ultraviolet-C (UV-C) light versus sodium hypochlorite delivered by an electrostatic sprayer for adjunctive decontamination of hospital rooms. Infect Control Hosp Epidemiol 2022:1-4. [DOI: 10.1017/ice.2022.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In a randomized trial, adjunctive ultraviolet-C light treatment with a room decontamination device and sodium hypochlorite delivered via an electrostatic sprayer were similarly effective in significantly reducing residual healthcare-associated pathogen contamination on floors and high-touch surfaces after manual cleaning and disinfection. Less time until the room was ready to be occupied by another patient was required for electrostatic spraying.
Collapse
|
18
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Microbial burden on environmental surfaces in patient rooms before daily cleaning-Analysis of multiple confounding variables. Infect Control Hosp Epidemiol 2021; 43:1142-1146. [PMID: 34396941 DOI: 10.1017/ice.2021.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Estimated levels of microbial burden on hospital environmental surfaces vary substantially among published studies. Cultures obtained during a cluster-controlled crossover trial of a quaternary ammonium (Quat) disinfectant versus an improved hydrogen peroxide (IHP) disinfectant provided additional data on the amount of microbial burden on selected surfaces. METHODS RODAC plates containing D/E neutralizing agar were used to sample a convenience sample of 5-8 high-touch surfaces in patient rooms on 2 medical wards, an intensive care unit, and a step-down unit at a large hospital. Before routine daily cleaning, samples were obtained in varying rooms over an 11-month period. RODAC plates (1 per surface sampled) were incubated for 72 hours, and aerobic colony counts per plate (ACCs) were determined. Statistical analysis was used to determine the potential impact on ACCs of study period, cleaning compliance rate, disinfectant used, ward, surface sampled, and isolation room status. RESULTS Overall, 590 cultures were obtained on Quat wards and 589 on IHP wards. Multivariable regression analysis revealed that mean ACCs differed significantly by site (P < .001), type of ward (P < .001), isolation room status (P = .039), and study period (P = .036). The highest mean ACCs per RODAC plate were on toilet seats (112.8), bedside rails (92.0), and bathroom grab bars (79.5). CONCLUSIONS The combination of factors analyzed revealed that estimating microbial burden is complex and is affected by multiple factors. Additional studies should evaluate individual sites, ward types, cleaning and disinfection practices, and isolation room status.
Collapse
|
20
|
Microbial bioburden of inpatient and outpatient areas beyond patient hospital rooms. Infect Control Hosp Epidemiol 2021; 43:1017-1021. [PMID: 34294185 DOI: 10.1017/ice.2021.309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the frequency of environmental contamination in hospital areas outside patient rooms and in outpatient healthcare facilities. DESIGN Culture survey. SETTING This study was conducted across 4 hospitals, 4 outpatient clinics, and 1 surgery center. METHODS We conducted 3 point-prevalence culture surveys for methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridioides difficile, Candida spp, and gram-negative bacilli including Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumanii, and Stenotrophomonas maltophilia in each facility. In hospitals, high-touch surfaces were sampled from radiology, physical therapy, and mobile equipment and in emergency departments, waiting rooms, clinics, and endoscopy facilities. In outpatient facilities, surfaces were sampled in exam rooms including patient and provider areas, patient bathrooms, and waiting rooms and from portable equipment. Fluorescent markers were placed on high-touch surfaces and removal was assessed 1 day later. RESULTS In the hospitals, 110 (9.4%) of 1,195 sites were positive for 1 or more bacterial pathogens (range, 5.3%-13.7% for the 4 hospitals) and 70 (5.9%) were positive for Candida spp (range, 3.7%-5.9%). In outpatient facilities, 31 of 485 (6.4%) sites were positive for 1 or more bacterial pathogens (range, 2% to 14.4% for the 5 outpatient facilities) and 50 (10.3%) were positive for Candida spp (range, 3.9%-23.3%). Fluorescent markers had been removed from 33% of sites in hospitals (range, 28.4%-39.7%) and 46.3% of sites in outpatient clinics (range, 7.4%-82.8%). CONCLUSIONS Surfaces in hospitals outside patient rooms and in outpatient facilities are frequently contaminated with healthcare-associated pathogens. Improvements in cleaning and disinfection practices are needed to reduce contamination.
Collapse
|