1
|
Powell L, Dhummakupt A, Siems L, Singh D, Le Duff Y, Uprety P, Jennings C, Szewczyk J, Chen Y, Nastouli E, Persaud D. Clinical validation of a quantitative HIV-1 DNA droplet digital PCR assay: Applications for detecting occult HIV-1 infection and monitoring cell-associated HIV-1 dynamics across different subtypes in HIV-1 prevention and cure trials. J Clin Virol 2021; 139:104822. [PMID: 33930698 PMCID: PMC8212401 DOI: 10.1016/j.jcv.2021.104822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In HIV-1-exposed infants, nucleic acid testing (NAT) is required to diagnose infection since passively transferred maternal antibodies preclude antibody testing. The sensitivity of clinical NAT assays is lowered with infant antiretroviral prophylaxis and, with empiric very early antiretroviral treatment of high-risk infants, thereby impacting early infant diagnosis. Similarly, adult HIV-1 infections acquired under pre-exposure prophylaxis may occur at low levels, with undetectable plasma viremia and indeterminate antibody tests, for which HIV-1 DNA testing maybe a useful adjunct. Cell-associated HIV-1 DNA concentrations are also used to monitor HIV-1 persistence in viral reservoirs with relevance to HIV-1 cure therapeutics, particularly in perinatal infections. OBJECTIVES We clinically validated an HIV-1 DNA quantitative assay using droplet digital PCR (ddPCR), across different HIV-1 subtypes. STUDY DESIGN The analytical sensitivity and specificity of an HIV-1 DNA ddPCR assay was determined using serial dilutions of a plasmid containing HIV-1 LTR-gag spiked into peripheral blood mononuclear cells (PBMCs), with MOLT-4 cells or PBMCs infected with different HIV-1 subtypes (A, B and C), and U1 cells spiked into PBMCs. Inter- and intra-run variability were used to determine assay precision. RESULTS The HIV-1 LTR-gag ddPCR assay was reliable and reproducible, and exhibited high analytical specificity with sensitivity to near single copy level, across multiple HIV-1 subtypes, and a limit of detection of 4.09 copies/million PBMCs. CONCLUSIONS This assay has applications for detecting occult HIV-1-infection in the setting of combination and long-acting regimens used for HIV-1 prevention, across different HIV-1 subtypes, in infants and adults, and in HIV-1 cure interventions.
Collapse
Affiliation(s)
- Laura Powell
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Adit Dhummakupt
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Lilly Siems
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Dolly Singh
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Yann Le Duff
- Center for AIDS Reagents, National Institute for Biological Standards and Controls, England, UK
| | - Priyanka Uprety
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson University Hospital, Rutgers University, New Brunswick, NJ, United States
| | - Cheryl Jennings
- Rush University Medical Center, Department of Molecular Pathogens and Immunity, Chicago, IL, United States
| | - Joseph Szewczyk
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Ya Chen
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States
| | - Eleni Nastouli
- Department of Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health and Francis Crick Institute, London, UK
| | - Deborah Persaud
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, United States; Departments of Molecular Microbiology and Immunology and International Health, Johns Hopkins Bloomberg School of Public Health, United States.
| |
Collapse
|