1
|
Arora P, Behera M, Saraf SA, Shukla R. Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics. Curr Pharm Des 2024; 30:2187-2205. [PMID: 38874046 DOI: 10.2174/0113816128308066240529121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Abstract
Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.
Collapse
Affiliation(s)
- Priyanka Arora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Manaswini Behera
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| |
Collapse
|
2
|
Tahsini Tekantapeh S, Ghojazadeh M, Ghamari AA, Mohammadi A, Soleimanpour H. Therapeutic and anti-inflammatory effects of baricitinib on mortality, ICU transfer, clinical improvement, and CRS-related laboratory parameters of hospitalized patients with moderate to severe COVID-19 pneumonia: a systematic review and meta-analysis. Expert Rev Respir Med 2022; 16:1109-1132. [PMID: 35981253 DOI: 10.1080/17476348.2022.2114899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Due to the high incidence and mortality of the worldwide COVID-19 pandemic, beneficial effects of effective antiviral and anti-inflammatory drugs used in other diseases, especially rheumatic diseases, were observed in the treatment of COVID-19. METHODS Clinical and laboratory parameters of eight included cohort studies and five Randomized Control Trials between the baricitinib group and the control group were analyzed on the first day of admission and days 7, 14, and 28 during hospitalization. RESULTS According to the meta-analysis result of eight included cohort studies with 2088 patients, the Pooled Risk Ratios were 0.46 (P<0.001) for mortality, 6.14 (P< 0.001) for hospital discharge, and the mean differences of 76.78 (P< 0.001) for PaO2/FiO2 ratio was -47.32 (P= 0.02) for CRP, in the baricitinib group vs. control group on the seventh or fourteenth day of the treatment compared to the first day. Based on the meta-analysis of five RCT studies with 11825 patients, the pooled RR was 0.84 (P= 0.001) for mortality and 1.07 (P= 0.014) for patients' recovery. The mean differences were -0.80 (P<0.001) for hospitalization days, -0.51(P= 0.33) for time to recovery in the baricitinib group vs. control group. CONCLUSIONS Baricitinib prescription is strongly recommended in moderate to severe COVID-19. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number: CRD42021254541.
Collapse
Affiliation(s)
| | - Morteza Ghojazadeh
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Ghamari
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Road Traffic Injury research center, Tabriz university of medical sciences, Tabriz, Iran
| |
Collapse
|
3
|
Puhl AC, Mottin M, Sacramento CQ, Tavella TA, Dias GG, Fintelman-Rodrigues N, Temerozo JR, Dias SSG, Ramos PRPS, Merten EM, Pearce KH, Costa FT, Premkumar L, Souza TML, Andrade CH, Ekins S. Computational and Experimental Approaches Identify Beta-Blockers as Potential SARS-CoV-2 Spike Inhibitors. ACS OMEGA 2022; 7:27950-27958. [PMID: 35983371 PMCID: PMC9380819 DOI: 10.1021/acsomega.2c01707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Finding antivirals for SARS-CoV-2 is still a major challenge, and many computational and experimental approaches have been employed to find a solution to this problem. While the global vaccination campaigns are the primary driver of controlling the current pandemic, orally bioavailable small-molecule drugs and biologics are critical to overcome this global issue. Improved therapeutics and prophylactics are required to treat people with circulating and emerging new variants, addressing severe infection, and people with underlying or immunocompromised conditions. The SARS-CoV-2 envelope spike is a challenging target for viral entry inhibitors. Pindolol presented a good docking score in a previous virtual screening using computational docking calculations after screening a Food and Drug Administration (FDA)-approved drug library of 2400 molecules as potential candidates to block the SARS-CoV-2 spike protein interaction with the angiotensin-converting enzyme 2 (ACE-2). Here, we expanded the computational evaluation to identify five beta-blockers against SARS-CoV-2 using several techniques, such as microscale thermophoresis, NanoDSF, and in vitro assays in different cell lines. These data identified carvedilol with a K d of 364 ± 22 nM for the SARS-CoV-2 spike and in vitro activity (EC50 of 7.57 μM, CC50 of 18.07 μM) against SARS-CoV-2 in Calu-3 cells. We have shown how we can apply multiple computational and experimental approaches to find molecules that can be further optimized to improve anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Melina Mottin
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina Q. Sacramento
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil
| | - Gabriel Gonçalves Dias
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Jairo R. Temerozo
- Laboratory
on Thymus Research, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- National
Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Suelen S. G. Dias
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Eric M. Merten
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Fabio Trindade
Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thiago Moreno L. Souza
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Horta Andrade
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|