1
|
Wang T, Park B, Anderson G, Shaller B, Budvytiene I, Banaei N. Application of Diagnostic Stewardship to Fungal Polymerase Chain Reaction: Low Yield of Follow-up Testing on Plasma and Bronchoalveolar Lavage After a Negative Result. Clin Infect Dis 2024; 79:944-952. [PMID: 39162527 DOI: 10.1093/cid/ciae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Early diagnosis of invasive fungal disease is essential for optimizing management. Although the clinical utility of fungal polymerase chain reaction (PCR) testing on plasma and bronchoalveolar lavage (BAL) has been established, the role of follow-up testing remains unclear. METHODS This was a retrospective single-center study. The yield of follow-up PCR for Aspergillus species, Mucorales agents, Fusarium species, Scedosporium species, dimorphic fungi, Pneumocystis jirovecii, and Candida species on plasma and/or BAL was measured at intervals of 1, 2, 3, and 4 weeks following a negative result. RESULTS A total of 1389 follow-up tests on 406 plasma specimens from 264 patients and 983 BAL specimens from 431 patients were evaluated. Overall, the positivity rate at 1, 2, 3, and 4 weeks was 2.7% (4/148), 3.3% (4/123), 5.1% (4/78), and 3.5% (2/57), respectively, on plasma, and 0% (0/333), 0.3% (1/288), 0.4% (1/228), and 0.7% (1/134), respectively, on BAL. Conversions occurred with Aspergillus species, Mucorales agents, and Fusarium species PCR on plasma and Aspergillus species and P jirovecii PCR on BAL. All patients who converted were immunocompromised. Within 1 week of a prior negative test, 2 Aspergillus and 2 Mucorales PCRs were positive on plasma, and zero tests were positive on BAL. In week 1, only 1 Aspergillus species that was positive on day 7 was classified as probable fungal disease. CONCLUSIONS Fungal PCR follow-up testing on plasma and BAL within 4 weeks of a prior negative result was of low yield and rarely generated a positive result considered clinically significant in the first week.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bosung Park
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gavin Anderson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Shaller
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Kushner LE, Schwenk HT, Qin F, Boothroyd D, Aftandilian C. Application of cell-free DNA fungal polymerase chain reaction for invasive fungal disease evaluation in pediatric oncology and stem cell transplant patients. Pediatr Blood Cancer 2024; 71:e31133. [PMID: 38943234 DOI: 10.1002/pbc.31133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Molecular diagnostics may enable early, noninvasive detection of invasive fungal disease (IFD) in immunocompromised patients. Cell-free deoxyribonucleic acid (cfDNA) fungal polymerase chain reaction (PCR) assays were recently incorporated into institutional prolonged febrile neutropenia pathways. We aimed to evaluate the performance of plasma cfDNA PCR panels (mold and Candida panels) in pediatric oncology and hematopoietic stem cell transplant (HSCT) patients with clinical concern for IFD. METHODS This single-center, observational study assessed plasma cfDNA fungal PCR performance for noninvasive IFD detection in hospitalized pediatric oncology and HSCT patients. The primary outcome was IFD diagnosis per published consensus definitions within 1 month. Positive and negative agreement between plasma cfDNA fungal PCR and consensus definitions were calculated. We also described test turnaround time and patient survival. RESULTS From October 2021 to 2022, 54 patients underwent 60 evaluations with 11 proven/probable IFD cases. Comparing plasma cfDNA fungal PCRs to consensus definitions for proven/probable IFD, there was 73% positive agreement and 96% negative agreement. Two proven/probable cases with negative PCRs were caused by organisms not included on either panel. Median time to cfDNA fungal PCR result was 35 hours (interquartile range: 19-69) in eight proven/probable cases detected by cfDNA fungal PCR. There were 17 deaths among 54 patients, and IFD contributed to 45% of deaths in patients with proven/probable IFD. CONCLUSIONS Plasma cfDNA fungal PCRs detected relevant molds or yeast in most cases classified as proven/probable IFD. However, this targeted approach missed some cases. More studies are required to determine optimal utilization of molecular diagnostics in pediatric patients.
Collapse
Affiliation(s)
- Lauren E Kushner
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hayden T Schwenk
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - FeiFei Qin
- Quantitative Sciences Unit, Stanford University, Palo Alto, California, USA
| | - Derek Boothroyd
- Quantitative Sciences Unit, Stanford University, Palo Alto, California, USA
| | - Catherine Aftandilian
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
4
|
Huygens S, Schauwvlieghe A, Wlazlo N, Moors I, Boelens J, Reynders M, Chong GL, Klaassen CHW, Rijnders BJA. Diagnostic Value of Microbial Cell-free DNA Sequencing for Suspected Invasive Fungal Infections: A Retrospective Multicenter Cohort Study. Open Forum Infect Dis 2024; 11:ofae252. [PMID: 38868302 PMCID: PMC11166502 DOI: 10.1093/ofid/ofae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Background An early diagnosis and treatment of invasive fungal disease (IFD) is associated with improved outcome, but the moderate sensitivity of noninvasive diagnostic tests makes this challenging. Invasive diagnostic procedures such as bronchoalveolar lavage (BAL) have a higher yield but are not without risk. The detection and sequencing of microbial cell-free DNA (mcfDNA) may facilitate a noninvasive diagnosis. Materials In a prospective observational study, we collected plasma in the 120 hours preceding or following a BAL in patients with hematological malignancies suspected for a pulmonary IFD. The EORTC/MSGERC2020 criteria were used for IFD classification. Sequencing was performed by Karius (Redwood City, CA) using their Karius Test (KT) on plasma and a "research use only test" on BAL fluid if available. Cases with a probable/proven IFD were identified based on standard diagnostic tests on serum and BAL (microscopy, polymerase chain reaction, galactomannan, culture) and used to calculate the sensitivity, specificity, and additional diagnostic value of the KT. Results Of 106 patients enrolled, 39 (37%) had a proven/probable invasive aspergillosis, 7 (7%) a non-Aspergillus IFD, and 4 (4%) a mixed IFD. The KT detected fungal mcfDNA in 29 (28%) patients. Compared with usual diagnostic tests, the sensitivity and specificity were 44.0% (95% confidence interval [CI], 31.2-57.7) and 96.6% (95% CI, 88.5%-99.1%). Sensitivity of the KT was higher in non-Aspergillus IFD (Mucorales:2/3, Pneumocystis jirovecii: 3/5). On BAL, the sensitivity was 72.2% (95% CI, 62.1-96.3), and specificity 83.3% (95% CI, 49.1-87.5). Conclusions Sequencing of mcfDNA may facilitate a noninvasive diagnosis of IFD in particular non-Aspergillus IFD. However, on plasma and similar to currently available diagnostics, it cannot be used as a "rule-out" test.
Collapse
Affiliation(s)
- Sammy Huygens
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | | | - Nick Wlazlo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ine Moors
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, AZ St-Jan Brugge-Oostende Hospital, Bruges, Belgium
| | - Ga-Lai Chong
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Moreno A, Mah J, Budvytiene I, Ho DY, Schwenk HT, Banaei N. Dynamics and prognostic value of plasma cell-free DNA PCR in patients with invasive aspergillosis and mucormycosis. J Clin Microbiol 2024; 62:e0039424. [PMID: 38602412 PMCID: PMC11237630 DOI: 10.1128/jcm.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Aspergillus species and Mucorales agents are the primary etiologies of invasive fungal disease (IFD). Biomarkers that predict outcomes are needed to improve care. Patients diagnosed with invasive aspergillosis and mucormycosis using plasma cell-free DNA (cfDNA) PCR were retested weekly for 4 weeks. The primary outcome included all-cause mortality at 6 weeks and 6 months based on baseline cycle threshold (CT) values and results of follow-up cfDNA PCR testing. Forty-five patients with Aspergillus and 30 with invasive Mucorales infection were retested weekly for a total of 197 tests. Using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium (EORTC/MSG) criteria, 30.7% (23/75), 25.3% (19/75), and 38.7% (29/75) had proven, probable, and possible IFD, respectively. In addition, 97.3% (73/75) were immunocompromised. Baseline CT increased significantly starting at week 1 for Mucorales and week 2 for Aspergillus. Aspergillosis and mucormycosis patients with higher baseline CT (CT >40 and >35, respectively) had a nonsignificantly higher survival rate at 6 weeks, compared with patients with lower baseline CT. Mucormycosis patients with higher baseline CT had a significantly higher survival rate at 6 months. Mucormycosis, but not aspergillosis patients, with repeat positive cfDNA PCR results had a nonsignificantly lower survival rate at 6 weeks and 6 months compared with patients who reverted to negative. Aspergillosis patients with baseline serum Aspergillus galactomannan index <0.5 and <1.0 had significantly higher survival rates at 6 weeks when compared with those with index ≥0.5 and ≥1.0, respectively. Baseline plasma cfDNA PCR CT can potentially be used to prognosticate survival in patients with invasive Aspergillus and Mucorales infections. IMPORTANCE We show that Aspergillus and Mucorales plasma cell-free DNA PCR can be used not only to noninvasively diagnose patients with invasive fungal disease but also to correlate the baseline cycle threshold with survival outcomes, thus potentially allowing the identification of patients at risk for poor outcomes, who may benefit from more targeted therapies.
Collapse
Affiliation(s)
- Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jordan Mah
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, California, USA
| | - Dora Y. Ho
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hayden T. Schwenk
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Palo Alto, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Bio LL, Weng Y, Schwenk HT. Antifungal stewardship in practice: Insights from a prospective audit and feedback program. Infect Control Hosp Epidemiol 2023; 44:2017-2021. [PMID: 37381887 PMCID: PMC10755142 DOI: 10.1017/ice.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE To identify characteristics of antifungal prospective audit and feedback (PAF) and to compare rates of PAF recommendation and acceptance between antifungal and antibiotic agents. DESIGN Retrospective cohort study of antifungal and antibiotic audits by a children's hospital antimicrobial stewardship program (ASP) from November 1, 2020, to October 31, 2022. METHODS Antimicrobial audit data were retrieved from the ASP data warehouse. We characterized antifungal PAF using descriptive statistics. We then compared the overall rates of PAF recommendation and recommendation acceptance between antifungals and antibiotics. We also compared the differences in antifungal and antibiotic PAF recommendation and acceptance rates across various factors, including infectious problem, medical service, and recommendation type. RESULTS Of 10,402 antimicrobial audits identified during the study period, 8,599 (83%) were for antibiotics and 1,803 (17%) were for antifungals. The highest antifungal recommendation rates were for liposomal amphotericin B, antifungals used for sepsis or respiratory tract infection, and antifungals prescribed in the cardiovascular intensive care unit. The rate of PAF recommendation was higher for antibiotics than for antifungals (29% vs 21%; P < .001); however, the rates of recommendation acceptance were similar. Recommendations to discontinue or for medication monitoring were more common for antifungals. CONCLUSIONS Our analysis of antifungal PAF identified key opportunities to improve antifungal use, including the optimized use of specific agents and targeted use by certain medical services. Moreover, antifungal PAF, despite identifying fewer recommendations compared to antibiotic PAF, were associated with similarly high rates of acceptance, highlighting a promising opportunity for antifungal stewardship.
Collapse
Affiliation(s)
- Laura L. Bio
- Department of Pharmacy, Lucile Packard Children’s Hospital Stanford, Stanford, California
| | - Yingjie Weng
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
| | - Hayden T. Schwenk
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Mah J, Nicholas V, Tayyar R, Moreno A, Murugesan K, Budvytiene I, Banaei N. Superior Accuracy of Aspergillus Plasma Cell-Free DNA Polymerase Chain Reaction Over Serum Galactomannan for the Diagnosis of Invasive Aspergillosis. Clin Infect Dis 2023; 77:1282-1290. [PMID: 37450614 DOI: 10.1093/cid/ciad420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) in immunocompromised hosts carries high morbidity and mortality. Diagnosis is often delayed because definitive diagnosis requires invasive specimen collection, while noninvasive testing with galactomannan is moderately accurate. Plasma cell-free DNA polymerase chain reaction (cfDNA PCR) represents a novel testing modality for the noninvasive diagnosis of invasive fungal disease (IFD). We directly compared the performance of Aspergillus plasma cfDNA PCR with serum galactomannan for the diagnosis of IA during routine clinical practice. METHODS We conducted a retrospective study of all patients with suspected IFD who had Aspergillus plasma cfDNA PCR testing at Stanford Health Care from 1 September 2020 to 30 October 2022. Patients were categorized into proven, probable, possible, and no IA based on the EORTC/MSG definitions. Primary outcomes included the clinical sensitivity and specificity for Aspergillus plasma cfDNA PCR and galactomannan. RESULTS Overall, 238 unique patients with Aspergillus plasma cfDNA PCR test results, including 63 positives and 175 nonconsecutive negatives, were included in this study. The majority were immunosuppressed (89.9%) with 22.3% 30-day all-cause mortality. The overall sensitivity and specificity of Aspergillus plasma cfDNA PCR were 86.0% (37 of 43; 95% confidence interval [CI], 72.7-95.7) and 93.1% (121 of 130; 95% CI, 87.4-96.3), respectively. The sensitivity and specificity of serum galactomannan in hematologic malignancies/stem cell transplants were 67.9% (19 of 28; 95% CI, 49.3-82.1) and 89.8% (53 of 59; 95% CI, 79.5-95.3), respectively. The sensitivity of cfDNA PCR was 93.0% (40 of 43; 95% CI, 80.9-98.5) in patients with a new diagnosis of IA. CONCLUSIONS Aspergillus plasma cfDNA PCR represents a more sensitive alternative to serum galactomannan for noninvasive diagnosis of IA.
Collapse
Affiliation(s)
- Jordan Mah
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Veronica Nicholas
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angel Moreno
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kanagavel Murugesan
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Niaz Banaei
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Kanaujia R, Sharma V, Biswal M, Singh S, Ray P, Angrup A. Microbial cell-free DNA detection: Minimally invasive diagnosis of infectious diseases. Indian J Med Microbiol 2023; 46:100433. [PMID: 37945127 DOI: 10.1016/j.ijmmb.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Detection of infectious diseases, especially among immunocompromised and patients on prolonged anti-microbial treatment, remains challenging, limited by conventional techniques with low sensitivity and long-turnaround time. Molecular detection by polymerase chain reaction (PCR) also has limited utility as it requires a targeted approach with prior suspicion of the infecting organism. Advancements in sequencing methodologies, specifically next-generation sequencing (NGS), have presented a promising opportunity to identify pathogens in cases where conventional techniques may be inadequate. However, the direct application of these techniques for diagnosing invasive infections is still limited by the need for invasive sampling, highlighting the pressing need to develop and implement non-invasive or minimally invasive approaches to improve the diagnosis of invasive infections. OBJECTIVES The objectives of this article are to explore the notable features, clinical utility, and constraints associated with the detection of microbial circulating cell-free DNA (mcfDNA) as a minimally invasive diagnostic tool for infectious diseases. CONTENT The mcfDNA detection provides an opportunity to identify micro-organisms in the blood of a patient. It is especially beneficial in immunocompromised patients where invasive sampling is not possible or where repeated cultures are negative. This review will discuss the applications and constraints of detecting mcfDNA for diagnosing infections and the various platforms available for its detection.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, AIMS, Mohali, India
| | - Pallab Ray
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Archana Angrup
- Department of Medical Microbiology, PGIMER, Chandigarh, India.
| |
Collapse
|
9
|
Rosenthal A, Prati A, Kushner LE, Valencia A, Mathew R. Impact of cell-free DNA fungal polymerase chain reaction panels on healthcare-associated infection mould investigations. J Infect Prev 2023; 24:223-227. [PMID: 37736124 PMCID: PMC10510659 DOI: 10.1177/17571774231197603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
Launch of in-house sensitive cell-free deoxyribonucleic acid (cfDNA) mould polymerase chain reaction (PCR) assays increased detection of moulds meeting suspected healthcare-associated infection (HAI) criteria. Definition was based on time from admission and mould detection in culture or via molecular methods. We created a modified mould HAI algorithm incorporating clinical context into the case definition, which allowed for better capture of possible mould HAIs, decreased number of investigations, and improved utilization of Infection Prevention and Control (IPC) resources.
Collapse
Affiliation(s)
- Ayelet Rosenthal
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University Medical School, Stanford, CA, USA
| | - Alison Prati
- Center for Pediatric and Maternal Value, Department of Infection Prevention & Control, Stanford Medicine Children’s Health, Palo Alto, CA, USA
| | - Lauren E Kushner
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University Medical School, Stanford, CA, USA
| | - Amy Valencia
- Center for Pediatric and Maternal Value, Department of Infection Prevention & Control, Stanford Medicine Children’s Health, Palo Alto, CA, USA
| | - Roshni Mathew
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University Medical School, Stanford, CA, USA
| |
Collapse
|
10
|
Lee KH, Won D, Kim J, Lee JA, Kim CH, Kim JH, Jeong SJ, Ku NS, Choi JY, Yeom JS, Cho H, Chung H, Cheong JW, Lee ST, Jang JE, Shin S, Ahn JY. Utility of Plasma Microbial Cell-Free DNA Whole-Genome Sequencing for Diagnosis of Invasive Aspergillosis in Patients With Hematologic Malignancy or COVID-19. J Infect Dis 2023; 228:444-452. [PMID: 37317030 DOI: 10.1093/infdis/jiad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We evaluated the clinical accuracy and utility of whole-genome sequencing (WGS) of plasma microbial cell-free DNA (cfDNA) as a novel noninvasive method in diagnosing invasive aspergillosis (IA) in patients with hematologic malignancy (HM) or coronavirus disease 2019 (COVID-19). METHODS Adults with HM or COVID-19 and suspected IA were recruited. IA cases were retrospectively diagnosed according to EORTC/MSG definitions and ECMM/ISHAM criteria for HM and COVID-19 patients, respectively. The results of cfDNA WGS were compared with the conventional diagnosis. RESULTS Microbial cfDNA WGS was performed 53 times from 41 participants (19 from HM, 16 from COVID-19, and 7 from the control group). In participants with HM, Aspergillus cfDNA was detected in 100% of proven IA and 91.7% of probable IA cases. In participants with COVID-19, 50.0% of probable IA were positive for Aspergillus in cfDNA WGS. Concordance between Aspergillus cfDNA detection and proven/probable IA conventional diagnosis was significantly higher in participants with HM than in those with COVID-19. IA diagnosed using EORTC/MGS definitions showed significantly high concordance between Aspergillus cfDNA detection and proven/probable IA. CONCLUSIONS Aspergillus cfDNA detection strongly correlated with proven/probable IA diagnosed using EORTC/MSG definitions and could be used as an additional diagnostic tool for IA.
Collapse
Affiliation(s)
- Ki Hyun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinnam Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Hyup Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Scholte LL, Bethony JM, Xian RR. Diagnosis and monitoring of virus-associated cancer using cell-free DNA. Curr Opin Virol 2023; 60:101331. [PMID: 37187125 PMCID: PMC11411455 DOI: 10.1016/j.coviro.2023.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Viral-associated cancers are a distinct group of malignancies with a unique pathogenesis and epidemiology. Liquid biopsy is a minimally invasive way to identify tumor-associated abnormalities in blood derivatives, such as plasma, to guide the diagnosis, prognosis, and treatment of patients with cancer. Liquid biopsy encompasses a multitude of circulating analytes with the most extensively studied being cell-free DNA (cfDNA). In recent decades, substantial advances have been made toward the study of circulating tumor DNA in nonviral-associated cancers. Many of these observations have been translated to the clinic to improve the outcomes of patients with cancer. The study of cfDNA in viral-associated cancers is rapidly evolving and reveals tremendous potential for clinical applications. This review provides an overview of the pathogenesis of viral-associated malignancies, the current state of cfDNA analysis in oncology, the current state of cfDNA analysis in viral-associated cancers, and perspectives for the future of liquid biopsies in viral-associated cancers.
Collapse
Affiliation(s)
- Larissa Ls Scholte
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, United States
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, United States
| | - Rena R Xian
- Department of Pathology and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
Accuracy of Pneumocystis jirovecii Plasma Cell-Free DNA PCR for Noninvasive Diagnosis of Pneumocystis Pneumonia. J Clin Microbiol 2022; 60:e0010122. [PMID: 35387472 DOI: 10.1128/jcm.00101-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii is a serious infection in immunocompromised hosts which requires prompt diagnosis and treatment. The recommended specimen for diagnosis of PCP is bronchoalveolar lavage (BAL) fluid, which is invasive and may not be possible in unstable patients. The aim of this study was to evaluate the accuracy of noninvasive P. jirovecii plasma cell-free DNA (cfDNA) PCR using recently optimized preanalytical and analytical methods. Adult patients undergoing clinical testing for PCP with direct fluorescent antibody stain (DFA), respiratory PCR, and/or β-d-glucan were included in this study. Sensitivity and specificity P. jirovecii plasma cfDNA PCR was determined in PCP suspects categorized as proven and probable. A total of 149 patients were included in this study, of which 10 had proven and 27 had probable PCP. Most patients (95.9%, 143/149) were immunocompromised, including hematological malignancies (30.1%), bone marrow transplant (11.2%), solid organ transplantation (47.6%), and HIV/AIDS (4.2%). P. jirovecii plasma cfDNA PCR showed sensitivity and specificity of 100% (10/10; 95% confidence interval [CI], 69.2 to 100) and 93.4% (127/136; 95% CI, 87.8 to 96.9), and 48.6% (18/37; 95% CI, 31.9 to 65.6) and 99.1% (108/109; 95% CI, 94.9 to 100) in proven and proven/probable cases, respectively. P. jirovecii cell-free DNA PCR was similar in sensitivity but with substantially improved specificity over β-d-glucan (sensitivity, 60.0% [18/30; 95% CI, 40.6 to 77.3]); specificity, 66.7% [22/33; 95% CI, 48.2 to 82.0]) in patients with proven/probable PCP. Plasma cfDNA PCR offers a noninvasive testing option for early and accurate diagnosis of PCP, particularly in patients who cannot tolerate bronchoscopy.
Collapse
|
13
|
White PL, Alanio A, Brown L, Cruciani M, Hagen F, Gorton R, Lackner M, Millon L, Morton CO, Rautemaa-Richardson R, Barnes RA, Donnelly JP, Loffler J. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev Mol Diagn 2022; 22:169-184. [PMID: 35130460 DOI: 10.1080/14737159.2022.2037423] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Fungal PCR has undergone considerable standardization and together with the availability of commercial assays, external quality assessment schemes and extensive performance validation data, is ready for widespread use for the screening and diagnosis of invasive fungal disease (IFD). AREAS COVERED Drawing on the experience and knowledge of the leads of the various working parties of the Fungal PCR initiative, this review will address general considerations concerning the use of molecular tests for the diagnosis of IFD, before focussing specifically on the technical and clinical aspects of molecular testing for the main causes of IFD and recent technological developments. EXPERT OPINION For infections caused by Aspergillus, Candida and Pneumocystis jirovecii, PCR testing is recommended, combination with serological testing will likely enhance the diagnosis of these diseases. For other IFD (e.g. Mucormycosis) molecular diagnostics, represent the only non-classical mycological approach towards diagnoses and continued performance validation and standardization has improved confidence in such testing. The emergence of antifungal resistance can be diagnosed, in part, through molecular testing. Next-generation sequencing has the potential to significantly improve our understanding of fungal phylogeny, epidemiology, pathogenesis, mycobiome/microbiome and interactions with the host, while identifying novel and existing mechanisms of antifungal resistance and novel diagnostic/therapeutic targets.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, UK CF14 4XW
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France.,Institut Pasteur, CNRS UMR2000, Unité de Mycologie Moléculaire, Centre National de Reference Mycoses invasives et Antifongiques, Paris, France
| | - Lottie Brown
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands & Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rebecca Gorton
- Dept. of Infection Sciences, Health Services Laboratories (HSL) LLP, London, UK
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Medical Microbiology and Publics Health, Medical University Innsbruck, Innsbruck, Austria
| | - Laurence Millon
- Parasitology-Mycology Department, University Hospital of Besançon, 25000 Besançon, France.,UMR 6249 CNRS Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - C Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia
| | - Riina Rautemaa-Richardson
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | - Juergen Loffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
14
|
Glasgow HL, Cruz K, Murphy SC. Reverse-transcription PCR increases sensitivity of broad-range fungal detection in bronchoalveolar lavage fluid. Med Mycol 2021; 60:6433194. [PMID: 34878120 DOI: 10.1093/mmy/myab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Broad-range PCR targeting 28S D1-D2 ribosomal DNA (rDNA) identifies numerous fungi but has limited sensitivity in clinical specimens. Ribosomal RNA (rRNA) vastly outnumbers rDNA, suggesting reverse transcription (RT)-PCR could improve detection. Among contrived samples, RT-PCR decreased 28S PCR cycle threshold values by 10--12 cycles and lowered the limit of detection > 2000-fold. Among 32 bronchoalveolar lavage specimens, RT-PCR detected 12/15 (80%) fungal PCR- or culture-positive specimens, versus 6/12 (50%) by 28S PCR, 9/12 (75%) by any fungal PCR, and 13/15 (87%) by culture. RT-PCR newly identified fungi in 4/17 (24%) PCR- and culture-negative specimens. RT substantially increased 28S PCR sensitivity overall. LAY SUMMARY Fungal infection remains difficult to diagnose in the laboratory. Here, we have shown that detecting ribosomal RNA and DNA, rather than only ribosomal DNA, in a broad range fungal assay results in a significant enhancement in the ability to detect and identify fungal pathogens in clinical samples.
Collapse
Affiliation(s)
- Heather L Glasgow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, USA
| | - Kurtis Cruz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, USA.,Department of Microbiology, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
15
|
White PL, Price JS, Cordey A, Backx M. Molecular Diagnosis of Yeast Infections. CURRENT FUNGAL INFECTION REPORTS 2021; 15:67-80. [PMID: 34178207 PMCID: PMC8212580 DOI: 10.1007/s12281-021-00421-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The use of molecular tests to aid the diagnosis of invasive yeast infection, in particular invasive candidosis, has been described for over two decades, yet widespread application is limited, and diagnosis remains heavily dependent on classical microbiology. This article will review developments from the past decade in attempt to build on existing knowledge. It will highlight clinical performance and limitations while reviewing developments on recognized procedures; it will also provide insight into novel approaches incorporated in response to clinical demand (e.g. C. auris and antifungal resistance) or technological advances (e.g. next-generation sequencing). RECENT FINDINGS Limited methodological standardization and, until recently, unavailability of commercial options have hindered the integration of molecular diagnostics for yeasts. The development of certain, novel commercial methods has received considerable evaluation allowing a greater understanding of individual assay performance, but widespread multicentre evaluation of most commercial kits is lacking. The detection of emerging pathogens (e.g. C. auris) has been enhanced by the development of molecular tests. Molecular methods are providing a better understanding of the mycobiome, mechanisms of resistance and epidemiology/phylogeny. SUMMARY Despite over two decades of use, the incorporation of molecular methods to enhance the diagnosis of yeast infections remains limited to certain specialist centres. While the development of commercial tests will provide stimulus for broader application, further validation and reduced costs are required. Over the same period of time, Aspergillus PCR has become more widely accepted driven by international efforts to standardize methodology; it is critical that yeast PCR follows suit. Next-generation sequencing will provide significant information on the mycobiome, antifungal resistance mechanism and even broad-range detection directly from the specimen, which may be critical for the molecular detection of yeasts other than Candida species, which is currently limited.
Collapse
Affiliation(s)
- P. Lewis White
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Jessica S. Price
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Alan Cordey
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Matthijs Backx
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| |
Collapse
|