1
|
Johnson TM, Rivera CG, Lee G, Zeuli JD. Pharmacology of emerging drugs for the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 37:100470. [PMID: 39188351 PMCID: PMC11345926 DOI: 10.1016/j.jctube.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium tuberculosis (TB) remains the leading cause of infection-related mortality worldwide. Drug resistance, need for multiple antimycobacterial agents, prolonged treatment courses, and medication-related side effects are complicating factors to TB cure. The introduction of treatment regimens containing the novel agents bedaquiline, pretomanid, and linezolid, with or without moxifloxacin (BPaL-M or BPaL, respectively) have substantially reduced TB-related morbidity and mortality and are associated with favorable rates of treatment completion and cure. This review summarizes key information on the pharmacology and treatment principles for moxifloxacin, bedaquiline, delamanid, pretomanid, linezolid, and tedizolid in the treatment of multi-drug resistant TB, with recommendations provided to address and attenuate common adverse effects during treatment.
Collapse
Affiliation(s)
| | | | - Grace Lee
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John D. Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Agibothu Kupparam HK, Shah I, Chandrasekaran P, Mane S, Sharma S, Thangavelu BR, Vilvamani S, Annavi V, Mahalingam SM, Thiruvengadam K, Navaneethapandian PG, Gandhi S, Poojari V, Nalwalla Z, Oswal V, Giridharan P, Babu SB, Rathinam S, Frederick A, Mankar S, Jeyakumar SM. Pharmacokinetics of anti-TB drugs in children and adolescents with drug-resistant TB: a multicentre observational study from India. J Antimicrob Chemother 2024; 79:2939-2947. [PMID: 39308327 DOI: 10.1093/jac/dkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB) is one of the challenging forms of TB to treat, not only in adults but also in children and adolescents. Further, there is a void in the treatment strategy exclusively for children due to various reasons, including paucity of pharmacokinetic (PK) data on anti-TB drugs across the globe. In this context, the present study aimed at assessing the PK of some of the anti-TB drugs used in DR-TB treatment regimens. METHOD A multicentre observational study was conducted among DR-TB children and adolescents (n = 200) aged 1-18 years (median: 12 years; IQR: 9-14) treated under programmatic settings in India. Steady-state PK (intensive: n = 89; and sparse: n = 111) evaluation of moxifloxacin, levofloxacin, cycloserine, ethionamide, rifampicin, isoniazid and pyrazinamide was carried out by measuring plasma levels using HPLC methods. RESULTS In the study population, the frequency of achieving peak plasma concentrations ranged between 13% (for rifampicin) to 82% (for pyrazinamide), whereas the frequency of suboptimal peak concentration for pyrazinamide, cycloserine, moxifloxacin, levofloxacin and rifampicin was 15%, 19%, 29%, 41% and 74%, respectively. Further, the frequency of supratherapeutic levels among patients varied between 3% for pyrazinamide and 60% for isoniazid. In the below-12 years age category, the median plasma maximum concentration and 12 h exposure of moxifloxacin were significantly lower than that of the above-12 years category despite similar weight-adjusted dosing. CONCLUSIONS Age significantly impacted the plasma concentration and exposure of moxifloxacin. The observed frequencies of suboptimal and supratherapeutic concentrations underscore the necessity for dose optimization and therapeutic drug monitoring in children and adolescents undergoing DR-TB treatment.
Collapse
Affiliation(s)
- Hemanth Kumar Agibothu Kupparam
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Ira Shah
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Padmapriyadarsini Chandrasekaran
- Department of Clinical Research, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sushant Mane
- Department of Pediatrics, State Pediatric Center of Excellence for TB, Grant Government Medical College, Sir JJ Group of Hospitals, Mumbai, India
| | - Sangeeta Sharma
- Department of Pediatrics, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Bharathi Raja Thangavelu
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sudha Vilvamani
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Vijayakumar Annavi
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Santhana Mahalingam Mahalingam
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Kannan Thiruvengadam
- Department of Epidemiology Statistics, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Poorna Gangadevi Navaneethapandian
- Department of Clinical Research, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Srushti Gandhi
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Vishrutha Poojari
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Zahabiya Nalwalla
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Pediatric DR TB (State), Center of Excellence, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, India
| | - Vikas Oswal
- DR-TB Site-Shatabdi Municipal Hospital, Govandi, Mumbai, India
| | - Prathiksha Giridharan
- Department of Epidemiology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| | - Sarath Balaji Babu
- Department of Pediatric Pulmonology, Institute of Child Health and Hospital for Children, Chennai, Tamil Nadu, India
| | - Sridhar Rathinam
- Government Hospital of Thoracic Medicine, Chennai, Tamil Nadu, India
| | | | - Suhbangi Mankar
- DR-TB Site-Shatabdi Municipal Hospital, Govandi, Mumbai, India
| | - Shanmugam Murugaiha Jeyakumar
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, No.1 Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, Tamil Nadu, India
| |
Collapse
|
3
|
Gaensbauer JT, Dash N, Verma S, Hall DJ, Adler-Shohet FC, Li G, Lee G, Dinnes L, Wendorf K. Multidrug-resistant tuberculosis in children: A practical update on epidemiology, diagnosis, treatment and prevention. J Clin Tuberc Other Mycobact Dis 2024; 36:100449. [PMID: 38757115 PMCID: PMC11096739 DOI: 10.1016/j.jctube.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Pediatric multidrug-resistant tuberculosis (MDR-TB) remains a significant global problem, and there are numerous barriers preventing children with MDR-TB from being identified, confirmed with microbiologic tests, and treated with a safe, practical, and effective regimen. However, several recent advances in diagnostics and treatment regimens have the promise to improve outcomes for children with MDR-TB. We introduce this review with two cases that exemplify both the challenges in management of MDR-TB in children, but also the potential to achieve a positive outcome. More than 30,000 cases of MDR-TB per year are believed to occur in children but less than 5% are confirmed microbiologically, contributing to poorer outcomes and excess mortality. Rapid molecular-based testing that provides information on rifampin susceptibility is increasingly globally available and recommended for all children suspected of TB disease--but remains limited by challenges obtaining appropriate samples and the paucibacillary nature of most pediatric TB. More complex assays allowing better characterization of drug-resistant isolates are emerging. For children diagnosed with MDR-TB, treatment regimens have traditionally been long and utilize multiple drugs associated with significant side effects, particularly injectable agents. Several new or repurposed drugs including bedaquiline, delamanid, clofazimine and linezolid now allow most treatment regimens to be shorter and all-oral. Yet data to support short, all-oral, novel regimens for young children containing pretomanid remain insufficient at present, and there is a compelling need to conduct pediatric trials of promising therapeutics and MDR-TB treatment regimens.
Collapse
Affiliation(s)
- James T. Gaensbauer
- Mayo Clinic Center for Tuberculosis, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nabaneeta Dash
- Department of Telemedicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Verma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - DJ Hall
- Division of Pediatric Hospital Medicine, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Felice C. Adler-Shohet
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Guyu Li
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Grace Lee
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Laura Dinnes
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Kristen Wendorf
- Department of Pediatrics, University of California San Francisco Benioff Children’s Hospital, Oakland, CA, USA
| |
Collapse
|
4
|
Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines 2023; 11:biomedicines11030940. [PMID: 36979919 PMCID: PMC10046592 DOI: 10.3390/biomedicines11030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Neonatal Infections are among the most common reasons for admission to the intensive care unit. Neonatal sepsis (NS) significantly contributes to mortality rates. Empiric antibiotic therapy of NS recommended by current international guidelines includes benzylpenicillin, ampicillin/amoxicillin, and aminoglycosides (gentamicin). The rise of antibacterial resistance precipitates the growth of the use of antibiotics of the Watch (second, third, and fourth generations of cephalosporines, carbapenems, macrolides, glycopeptides, rifamycins, fluoroquinolones) and Reserve groups (fifth generation of cephalosporines, oxazolidinones, lipoglycopeptides, fosfomycin), which are associated with a less clinical experience and higher risks of toxic reactions. A proper dosing regimen is essential for effective and safe antibiotic therapy, but its choice in neonates is complicated with high variability in the maturation of organ systems affecting drug absorption, distribution, metabolism, and excretion. Changes in antibiotic pharmacokinetic parameters result in altered efficacy and safety. Population pharmacokinetics can help to prognosis outcomes of antibiotic therapy, but it should be considered that the neonatal population is heterogeneous, and this heterogeneity is mainly determined by gestational and postnatal age. Preterm neonates are common in clinical practice, and due to the different physiology compared to the full terms, constitute a specific neonatal subpopulation. The objective of this review is to summarize the evidence about the developmental changes (specific for preterm and full-term infants, separately) of pharmacokinetic parameters of antibiotics used in neonatal intensive care units.
Collapse
|
5
|
Chirehwa MT, Resendiz-Galvan JE, Court R, De Kock M, Wiesner L, de Vries N, Harding J, Gumbo T, Warren R, Maartens G, Denti P, McIlleron H. Optimizing Moxifloxacin Dose in MDR-TB Participants with or without Efavirenz Coadministration Using Population Pharmacokinetic Modeling. Antimicrob Agents Chemother 2023; 67:e0142622. [PMID: 36744891 PMCID: PMC10019313 DOI: 10.1128/aac.01426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Moxifloxacin is included in some treatment regimens for drug-sensitive tuberculosis (TB) and multidrug-resistant TB (MDR-TB). Aiming to optimize dosing, we described moxifloxacin pharmacokinetic and MIC distribution in participants with MDR-TB. Participants enrolled at two TB hospitals in South Africa underwent intensive pharmacokinetic sampling approximately 1 to 6 weeks after treatment initiation. Plasma drug concentrations and clinical data were analyzed using nonlinear mixed-effects modeling with simulations to evaluate doses for different scenarios. We enrolled 131 participants (54 females), with median age of 35.7 (interquartile range, 28.5 to 43.5) years, median weight of 47 (42.0 to 54.0) kg, and median fat-free mass of 40.1 (32.3 to 44.7) kg; 79 were HIV positive, 29 of whom were on efavirenz-based antiretroviral therapy. Moxifloxacin pharmacokinetics were described with a 2-compartment model, transit absorption, and elimination via a liver compartment. We included allometry based on fat-free mass to estimate disposition parameters. We estimated an oral clearance for a typical patient to be 17.6 L/h. Participants treated with efavirenz had increased clearance, resulting in a 44% reduction in moxifloxacin exposure. Simulations predicted that, even at a median MIC of 0.25 (0.06 to 16) mg/L, the standard daily dose of 400 mg has a low probability of attaining the ratio of the area under the unbound concentration-time curve from 0 to 24 h to the MIC (fAUC0-24)/MIC target of >53, particularly in heavier participants. The high-dose WHO regimen (600 to 800 mg) yielded higher, more balanced exposures across the weight ranges, with better target attainment. When coadministered with efavirenz, moxifloxacin doses of up to 1,000 mg are needed to match these exposures. The safety of higher moxifloxacin doses in clinical settings should be confirmed.
Collapse
Affiliation(s)
- M. T. Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - J. E. Resendiz-Galvan
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - R. Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - M. De Kock
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - L. Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N. de Vries
- Brooklyn Chest Hospital, Cape Town, South Africa
| | - J. Harding
- DP Marais Hospital, Cape Town, South Africa
| | - T. Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - R. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - G. Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - P. Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - H. McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Parker CM, Karchmer AW, Fisher MC, Muhammad KM, Yu PA. Safety of Antimicrobials for Postexposure Prophylaxis and Treatment of Anthrax: A Review. Clin Infect Dis 2022; 75:S417-S431. [PMID: 36251549 PMCID: PMC9649414 DOI: 10.1093/cid/ciac592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent for anthrax, poses a potential bioterrorism threat and is capable of causing mass morbidity and mortality. Antimicrobials are the mainstay of postexposure prophylaxis (PEP) and treatment of anthrax. We conducted this safety review of 24 select antimicrobials to identify any new or emerging serious or severe adverse events (AEs) to help inform their risk-benefit evaluation for anthrax. METHODS Twenty-four antimicrobials were included in this review. Tertiary data sources (e.g. Lactmed, Micromedex, REPROTOX) were reviewed for safety information and summarized to evaluate the known risks of these antimicrobials. PubMed was also searched for published safety information on serious or severe AEs with these antimicrobials; AEs that met inclusion criteria were abstracted and reviewed. RESULTS A total of 1316 articles were reviewed. No consistent observations or patterns were observed among the abstracted AEs for a given antimicrobial; therefore, the literature review did not reveal evidence of new or emerging AEs that would add to the risk-benefit profiles already known from tertiary data sources. CONCLUSIONS The reviewed antimicrobials have known and/or potential serious or severe risks that may influence selection when recommending an antimicrobial for PEP or treatment of anthrax. Given the high fatality rate of anthrax, the risk-benefit evaluation favors use of these antimicrobials for anthrax. The potential risks of antimicrobials should not preclude these reviewed antimicrobials from clinical consideration for anthrax but rather guide appropriate antimicrobial selection and prioritization across different patient populations with risk mitigation measures as warranted.
Collapse
Affiliation(s)
- Corinne M Parker
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolf W Karchmer
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret C Fisher
- Clinical Professor of Pediatrics, Rutgers Robert Wood Johnson School of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Kalimah M Muhammad
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education Centers for Disease Control and Prevention Fellowship Program, Atlanta, Georgia, USA
| | - Patricia A Yu
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Radtke KK, Hesseling AC, Winckler JL, Draper HR, Solans BP, Thee S, Wiesner L, van der Laan LE, Fourie B, Nielsen J, Schaaf HS, Savic RM, Garcia-Prats AJ. Moxifloxacin Pharmacokinetics, Cardiac Safety, and Dosing for the Treatment of Rifampicin-Resistant Tuberculosis in Children. Clin Infect Dis 2022; 74:1372-1381. [PMID: 34286843 PMCID: PMC9049278 DOI: 10.1093/cid/ciab641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Moxifloxacin is a recommended drug for rifampin-resistant tuberculosis (RR-TB) treatment, but there is limited pediatric pharmacokinetic and safety data, especially in young children. We characterize moxifloxacin population pharmacokinetics and QT interval prolongation and evaluate optimal dosing in children with RR-TB. METHODS Pharmacokinetic data were pooled from 2 observational studies in South African children with RR-TB routinely treated with oral moxifloxacin once daily. The population pharmacokinetics and Fridericia-corrected QT (QTcF)-interval prolongation were characterized in NONMEM. Pharmacokinetic simulations were performed to predict expected exposure and optimal weight-banded dosing. RESULTS Eighty-five children contributed pharmacokinetic data (median [range] age of 4.6 [0.8-15] years); 16 (19%) were aged <2 years, and 8 (9%) were living with human immunodeficiency virus (HIV). The median (range) moxifloxacin dose on pharmacokinetic sampling days was 11 mg/kg (6.1 to 17). Apparent clearance was 6.95 L/h for a typical 16-kg child. Stunting and HIV increased apparent clearance. Crushed or suspended tablets had faster absorption. The median (range) maximum change in QTcF after moxifloxacin administration was 16.3 (-27.7 to 61.3) ms. No child had QTcF ≥500 ms. The concentration-QTcF relationship was nonlinear, with a maximum drug effect (Emax) of 8.80 ms (interindividual variability = 9.75 ms). Clofazimine use increased Emax by 3.3-fold. Model-based simulations of moxifloxacin pharmacokinetics predicted that current dosing recommendations are too low in children. CONCLUSIONS Moxifloxacin doses above 10-15 mg/kg are likely required in young children to match adult exposures but require further safety assessment, especially when coadministered with other QT-prolonging agents.
Collapse
Affiliation(s)
- Kendra K Radtke
- Department of Bioengineering and Therapeutic Sciences, University of California–San Francisco, San Francisco, California, USA
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - J L Winckler
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Heather R Draper
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Belen P Solans
- Department of Bioengineering and Therapeutic Sciences, University of California–San Francisco, San Francisco, California, USA
| | - Stephanie Thee
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Louvina E van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Barend Fourie
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - James Nielsen
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California–San Francisco, San Francisco, California, USA
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- University of Wisconsin, Department of Pediatrics, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Treatment of Rifampicin-Resistant Tuberculosis Disease and Infection in Children: Key Updates, Challenges and Opportunities. Pathogens 2022; 11:pathogens11040381. [PMID: 35456056 PMCID: PMC9024964 DOI: 10.3390/pathogens11040381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Children affected by rifampicin-resistant tuberculosis (RR-TB; TB resistant to at least rifampicin) are a neglected group. Each year an estimated 25,000–30,000 children develop RR-TB disease globally. Improving case detection and treatment initiation is a priority since RR-TB disease is underdiagnosed and undertreated. Untreated paediatric TB has particularly high morbidity and mortality. However, children receiving TB treatment, including for RR-TB, respond well. RR-TB treatment remains a challenge for children, their caregivers and TB programmes, requiring treatment regimens of up to 18 months in duration, often associated with severe and long-term adverse effects. Shorter, safer, effective child-friendly regimens for RR-TB are needed. Preventing progression to disease following Mycobacterium tuberculosis infection is another key component of TB control. The last few years have seen exciting advances. In this article, we highlight key elements of paediatric RR-TB case detection and recent updates, ongoing challenges and forthcoming advances in the treatment of RR-TB disease and infection in children and adolescents. The global TB community must continue to advocate for more and faster research in children on novel and repurposed TB drugs and regimens and increase investments in scaling-up effective approaches, to ensure an equitable response that prioritises the needs of this vulnerable population.
Collapse
|
10
|
Population Pharmacokinetics of Moxifloxacin in Children. Paediatr Drugs 2022; 24:163-173. [PMID: 35284983 PMCID: PMC9768852 DOI: 10.1007/s40272-022-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/OBJECTIVE Moxifloxacin is a fluoroquinolone that is commonly used in adults, but not children. Certain clinical situations compel pediatric clinicians to use moxifloxacin, despite its potential for toxicity and limited pharmacokinetics (PK) data. Our objective was to further characterize the pharmacokinetics of moxifloxacin in children. METHODS We performed an opportunistic, open-label population PK study of moxifloxacin in children < 18 years of age who received moxifloxacin as part of standard care. A set of structural PK models and residual error models were explored using nonlinear mixed-effects modeling. Covariates with known biological relationships were investigated for their influence on PK parameters. RESULTS We obtained 43 moxifloxacin concentrations from 14 participants who received moxifloxacin intravenously (n = 8) or orally (n = 6). The dose of moxifloxacin was 10 mg/kg daily in participants ≤ 40 kg and 400 mg daily in participants > 40 kg. The population mean clearance and mean volume of distribution were 18.2 L/h and 167 L, respectively. The oral absorption was described by a first-order process. The estimated extent of oral bioavailability was highly variable (range 20-91%). Total body weight was identified as a covariate on clearance and volume of distribution, and substantially reduced the random unexplained inter-individual variability for both parameters. No participants experienced suspected serious adverse reactions related to moxifloxacin. CONCLUSION These data add to the existing literature to support use of moxifloxacin in children in certain situations; however, further prospective studies on the safety and efficacy of moxifloxacin are needed.
Collapse
|
11
|
Litjens CHC, Verscheijden LFM, Bolwerk C, Greupink R, Koenderink JB, van den Broek PHH, van den Heuvel JJMW, Svensson EM, Boeree MJ, Magis-Escurra C, Hoefsloot W, van Crevel R, van Laarhoven A, van Ingen J, Kuipers S, Ruslami R, Burger DM, Russel FGM, Aarnoutse RE, Te Brake LHM. Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 62:385-396. [PMID: 34554580 PMCID: PMC9297990 DOI: 10.1002/jcph.1972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 02/03/2023]
Abstract
Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
Collapse
Affiliation(s)
- Carlijn H C Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Celine Bolwerk
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Influence of Malnutrition on the Pharmacokinetics of Drugs Used in the Treatment of Poverty-Related Diseases: A Systematic Review. Clin Pharmacokinet 2021; 60:1149-1169. [PMID: 34060020 PMCID: PMC8545752 DOI: 10.1007/s40262-021-01031-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
Background Patients affected by poverty-related infectious diseases (PRDs) are disproportionally affected by malnutrition. To optimize treatment of patients affected by PRDs, we aimed to assess the influence of malnutrition associated with PRDs on drug pharmacokinetics, by way of a systematic review. Methods A systematic review was performed on the effects of malnourishment on the pharmacokinetics of drugs to treat PRDs, including HIV, tuberculosis, malaria, and neglected tropical diseases. Results In 21/29 PRD drugs included in this review, pharmacokinetics were affected by malnutrition. Effects were heterogeneous, but trends were observed for specific classes of drugs and different types and degrees of malnutrition. Bioavailability of lumefantrine, sulfadoxine, pyrimethamine, lopinavir, and efavirenz was decreased in severely malnourished patients, but increased for the P-glycoprotein substrates abacavir, saquinavir, nevirapine, and ivermectin. Distribution volume was decreased for the lipophilic drugs isoniazid, chloroquine, and nevirapine, and the α1-acid glycoprotein-bound drugs quinine, rifabutin, and saquinavir. Distribution volume was increased for the hydrophilic drug streptomycin and the albumin-bound drugs rifampicin, lopinavir, and efavirenz. Drug elimination was decreased for isoniazid, chloroquine, quinine, zidovudine, saquinavir, and streptomycin, but increased for the albumin-bound drugs quinine, chloroquine, rifampicin, lopinavir, efavirenz, and ethambutol. Clinically relevant effects were mainly observed in severely malnourished and kwashiorkor patients. Conclusions Malnutrition-related effects on pharmacokinetics potentially affect treatment response, particularly for severe malnutrition or kwashiorkor. However, pharmacokinetic knowledge is lacking for specific populations, especially patients with neglected tropical diseases and severe malnutrition. To optimize treatment in these neglected subpopulations, adequate pharmacokinetic studies are needed, including severely malnourished or kwashiorkor patients. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01031-z.
Collapse
|
13
|
A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 2021; 45:305-313. [PMID: 31925745 DOI: 10.1007/s13318-019-00604-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.
Collapse
|
14
|
Jacobs TG, Svensson EM, Musiime V, Rojo P, Dooley KE, McIlleron H, Aarnoutse RE, Burger DM, Turkova A, Colbers A. Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection: a systematic review. J Antimicrob Chemother 2020; 75:3433-3457. [PMID: 32785712 PMCID: PMC7662174 DOI: 10.1093/jac/dkaa328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Management of concomitant use of ART and TB drugs is difficult because of the many drug-drug interactions (DDIs) between the medications. This systematic review provides an overview of the current state of knowledge about the pharmacokinetics (PK) of ART and TB treatment in children with HIV/TB co-infection, and identifies knowledge gaps. METHODS We searched Embase and PubMed, and systematically searched abstract books of relevant conferences, following PRISMA guidelines. Studies not reporting PK parameters, investigating medicines that are not available any longer or not including children with HIV/TB co-infection were excluded. All studies were assessed for quality. RESULTS In total, 47 studies met the inclusion criteria. No dose adjustments are necessary for efavirenz during concomitant first-line TB treatment use, but intersubject PK variability was high, especially in children <3 years of age. Super-boosted lopinavir/ritonavir (ratio 1:1) resulted in adequate lopinavir trough concentrations during rifampicin co-administration. Double-dosed raltegravir can be given with rifampicin in children >4 weeks old as well as twice-daily dolutegravir (instead of once daily) in children older than 6 years. Exposure to some TB drugs (ethambutol and rifampicin) was reduced in the setting of HIV infection, regardless of ART use. Only limited PK data of second-line TB drugs with ART in children who are HIV infected have been published. CONCLUSIONS Whereas integrase inhibitors seem favourable in older children, there are limited options for ART in young children (<3 years) receiving rifampicin-based TB therapy. The PK of TB drugs in HIV-infected children warrants further research.
Collapse
Affiliation(s)
- Tom G Jacobs
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Elin M Svensson
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Victor Musiime
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit. Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Kelly E Dooley
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob E Aarnoutse
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - David M Burger
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Anna Turkova
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Angela Colbers
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Li G, Jackson C, Bielicki J, Ellis S, Hsia Y, Sharland M. Global sales of oral antibiotics formulated for children. Bull World Health Organ 2020; 98:458-466. [PMID: 32742031 PMCID: PMC7375212 DOI: 10.2471/blt.19.235309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Objective To investigate international consumption patterns of child-appropriate oral formulations of antibiotics by formulation type, with a focus on dispersible tablets, using data from a global sales database. Method Antibiotic sales data for 2015 covering 74 countries and regional country groups were obtained from the MIDAS® pharmaceutical sales database, which includes samples of pharmacy wholesalers and retailers. The focus was on sales of child-appropriate oral formulations of Access antibiotics in the 2017 World Health Organization's WHO Model list of essential medicines for children. Sales volumes are expressed using a standard unit (i.e. one tablet, capsule, ampoule or vial or 5 mL of liquid). Sales were analysed by antibiotic, WHO region and antibiotic formulation. Findings Globally, 17.7 billion standard units of child-appropriate oral antibiotic formulations were sold in 2015, representing 24% of total antibiotic sales of 74.4 billion units (both oral and parenteral) in the database. The top five child-appropriate Access antibiotics by sales volume were amoxicillin, amoxicillin with clavulanic acid, trimethoprim-sulfamethoxazole, cefalexin and ampicillin. The proportion of the top five sold for use as a syrup varied between 42% and 99%. Dispersible tablets represented only 22% of all child-appropriate oral formulation sales and made up only 15% of sales of 10 selected Access antibiotics on the model list for children. Conclusion Globally most child-appropriate oral antibiotics were not sold as dispersible tablets in 2015, as recommended by WHO. There is a clear need for novel solid forms of antibiotics suitable for use in children.
Collapse
Affiliation(s)
- Grace Li
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0QT, England
| | - Charlotte Jackson
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0QT, England
| | - Julia Bielicki
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0QT, England
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership, Geneva, Switzerland
| | - Yingfen Hsia
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Mike Sharland
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 0QT, England
| |
Collapse
|
16
|
Palit A, Kar H. Prevention of transmission of leprosy: The current scenario. Indian J Dermatol Venereol Leprol 2020; 86:115-123. [DOI: 10.4103/ijdvl.ijdvl_326_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
18
|
Chiappini E, Matucci T, Lisi C, Petrolini C, Venturini E, Tersigni C, de Martino M, Galli L. Use of Second-line Medications and Treatment Outcomes in Children With Tuberculosis in a Single Center From 2007 to 2018. Pediatr Infect Dis J 2019; 38:1027-1034. [PMID: 31397749 DOI: 10.1097/inf.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The incidence of drug-resistant forms of tuberculosis (DR-TB) and the number of children treated with second-line drugs (SLDs) are increasing. However, limited amount of information is available regarding the use of SLDs in this population. METHODS To describe the treatment of pediatric TB with SLDs and factors associated with use of SLDs in children with and without documented DR-TB, records of pediatric TB patients referred to a center in Italy from 2007 to 2018 were reviewed retrospectively. RESULTS Of 204 children diagnosed with active TB during the study period, 42 were treated with SLDs because of confirmed or probable drug resistance (42.8%), adverse reactions to first-line drugs (7.1%), central nervous system involvement (11.9%) or unconfirmed possible drug resistance (38.1%). There were no deaths or adverse reactions to SLDs reported. Treatment was successful in 85.2% children treated with first-line drugs and 92.9% children treated with SLDs. After adjusting for calendar period, the only factor associated with DR-TB was <2 years old [odds ratio (OR): 5.24 for <2 years vs. 5-18 years; P = 0.008]. Factors associated with treatment with SLDs were TB at 2 or more sites (OR: 11.30; P < 0.001), extrapulmonary TB (OR: 8.48; P < 0.001) or adverse reactions to first-line drugs (OR: 7.48; P = 0.002). No differences were noted in age or region of origin. CONCLUSIONS A substantial proportion of TB children were treated with SLDs. The main reason for using SLDs was failure of a first-line drug regimen, suggesting possible DR-TB and underestimation of DR-TB in children. The use of SLD regimens was associated with a high success rate and good tolerability profile.
Collapse
Affiliation(s)
- Elena Chiappini
- From the Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Court R, Chirehwa MT, Wiesner L, de Vries N, Harding J, Gumbo T, Maartens G, McIlleron H. Effect of tablet crushing on drug exposure in the treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2019; 23:1068-1074. [PMID: 31627771 PMCID: PMC7402384 DOI: 10.5588/ijtld.18.0775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING: Treatment outcomes in multidrug-resistant tuberculosis (MDR-TB) are poor. Due to drug toxicity and a long treatment duration, approximately half of patients are treated successfully. Medication is often crushed for patients who have difficulty swallowing whole tablets. Whether crushing tablets affects drug exposure in MDR-TB treatment is not known.OBJECTIVE AND DESIGN: We performed a sequential pharmacokinetic study in patients aged >18 years on MDR-TB treatment at two hospitals in Cape Town, South Africa. We compared the bioavailability of pyrazinamide, moxifloxacin, isoniazid (INH), ethambutol and terizidone when the tablets were crushed and mixed with water before administration vs. swallowed whole. We sampled blood at six time points over 10 h under each condition separated by 2 weeks. Non-compartmental analysis was used to derive the key pharmacokinetic measurements.RESULTS: Twenty participants completed the study: 15 were men, and the median age was 31.5 years. There was a 42% reduction in the area under the curve AUC0-10 of INH when the tablets were crushed compared with whole tablets (geometric mean ratio 58%; 90%CI 47-73). Crushing tablets of pyrazinamide, moxifloxacin, ethambutol and terizidone did not affect the bioavailability significantly.CONCLUSION: We recommend that crushing of INH tablets in the MDR-TB treatment regimen be avoided. Paediatric INH formulations may be a viable alternative if the crushing of INH tablets is indicated.
Collapse
Affiliation(s)
- R Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town
| | - M T Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town
| | - L Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town
| | | | - J Harding
- DP Marais Hospital, Cape Town, South Africa
| | - T Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - G Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town
| | - H McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town
| |
Collapse
|
20
|
Ramachandran G. Pharmacokinetics of Second-Line Anti-Tubercular Drugs. Indian J Pediatr 2019; 86:714-716. [PMID: 30924070 DOI: 10.1007/s12098-019-02923-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/24/2022]
Abstract
Multidrug-resistant tuberculosis (MDR TB) has become a major global health concern and is also an issue in children. Children with MDR TB need longer duration of treatment with multiple drugs. The MDR TB treatment regimen usually comprises of a fluoroquinolone, an aminoglycoside, ethionamide, cycloserine, pyrazinamide and ethambutol. In the absence of pediatric friendly tablets/formulations, in most cases the adult tablets are either crushed or broken. This is likely to lead to inaccurate dosing. Very limited information is available on the pharmacokinetics of second-line anti-TB drugs in children with MDR TB, except for few studies from South Africa and one from India. Drugs such as linezolid, clofazimine are also being considered for the treatment of MDR TB in children. However, their pharmacokinetics is not known in the pediatric population. It is important to generate pharmacokinetic studies of drugs used to treat MDR TB in children in different settings, which would provide useful information on the adequacy of drug doses.
Collapse
Affiliation(s)
- Geetha Ramachandran
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
21
|
Matucci T, Galli L, de Martino M, Chiappini E. Treating children with tuberculosis: new weapons for an old enemy. J Chemother 2019; 31:227-245. [DOI: 10.1080/1120009x.2019.1598039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tommaso Matucci
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, Anna Meyer Children University Hospital, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Stass H, Lettieri J, Vanevski KM, Willmann S, James LP, Sullivan JE, Arrieta AC, Bradley JS. Pharmacokinetics, Safety, and Tolerability of Single-Dose Intravenous Moxifloxacin in Pediatric Patients: Dose Optimization in a Phase 1 Study. J Clin Pharmacol 2019; 59:654-667. [PMID: 30681729 PMCID: PMC9252262 DOI: 10.1002/jcph.1358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/25/2018] [Indexed: 09/01/2024]
Abstract
The pharmacokinetics, safety, and tolerability of a single dose of moxifloxacin were characterized in 31 pediatric patients already receiving antibiotics for a suspected or proven infection in an open-label phase 1 study. A dosing strategy for each age cohort (Cohort 1: ≥6 years to ≤14 years; Cohort 2: ≥2 years to <6 years; Cohort 3: >3 month to <2 years) was developed using physiology-based pharmacokinetic modeling combined with a stepwise dosing scheme to obtain a similar exposure to adults receiving 400 mg of moxifloxacin. Doses, adjusted to body weight and age, were gradually escalated from 5 mg/kg in Cohort 1 to 10 mg/kg in Cohort 3 based on interim analysis of the pharmacokinetic and safety data. Plasma and urine samples before and after the 60-minute infusion were collected for the analysis of moxifloxacin and its metabolites using a validated high-pressure liquid chromatography assay with tandem mass spectrometry. Moxifloxacin and metabolite concentrations in plasma were within the ranges observed in adults; however, clearance of all analytes was lower in pediatric patients compared with adults. Population pharmacokinetic analyses using the achieved exposure levels in the 3 age cohorts (with known body weight and clearance) predicted similar efficacy and safety profiles to adults. Moxifloxacin was well tolerated in all pediatric age cohorts. Adverse events related to moxifloxacin were mild or moderate in intensity and showed no correlation with increased weight-adjusted doses. Our findings guided the selection of age-appropriate clinical doses for a subsequent phase 3 clinical trial in pediatric patients with complicated intra-abdominal infections.
Collapse
Affiliation(s)
| | | | | | | | - Laura P. James
- Department of Pediatrics, University of Arkansas for Medical Science and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Janice E. Sullivan
- University of Louisville/Kosair Charities Pediatric Clinical Research Unit/Norton Children’s Hospital Louisville, KY, USA
| | | | - John S. Bradley
- University of California, San Diego School of Medicine and Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
23
|
Merid MW, Gezie LD, Kassa GM, Muluneh AG, Akalu TY, Yenit MK. Incidence and predictors of major adverse drug events among drug-resistant tuberculosis patients on second-line anti-tuberculosis treatment in Amhara regional state public hospitals; Ethiopia: a retrospective cohort study. BMC Infect Dis 2019; 19:286. [PMID: 30917788 PMCID: PMC6437856 DOI: 10.1186/s12879-019-3919-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/19/2019] [Indexed: 11/22/2022] Open
Abstract
Background Second line anti-tuberculosis drugs are substantially complex, long term, more costly, and more toxic than first line anti-tuberculosis drugs. In Ethiopia, evidence on the incidence and predictors of adverse drug events has been limited. Thus, this study aimed at assessing incidence and predictors of major adverse drug events among drug resistant tuberculosis patients on second line tuberculosis treatment in Amhara Regional State public hospitals, Ethiopia. Methods A multi-center retrospective cohort study was conducted on 570 drug resistant tuberculosis Patients. Data were entered in to EPI-Data version 4.2.0.0 and exported to Stata version 14 for analysis. Proportional hazard assumption was checked. The univariate Weibull regression gamma frailty model was fitted. Cox-Snell residual was used to test goodness of fit and Akaike Information Criteria (AIC) for model selection. Hazard ratio with 95% CI was computed and variables with P-value < 0.05 in the multivariable analysis were taken as significant predictors for adverse drug event. Results A total of 570 patients were followed for 5045.09 person-month (PM) observation with a median follow-uptime of 8.23 months (Inter Quartile Range (IQR) =2.66–23.33). The overall incidence rate of major adverse drug events was 5.79 per 100 PM (95% CI: 5.16, 6.49). Incidence rate at the end of 2nd, 4th, and 6th months was 13.73, 9.25, 5.97 events per 100 PM observations, respectively. Age at 25–49 (Adjusted Hazard Ratio (AHR) = 3.36, 95% CI: 1.36, 8.28), and above 50 years (AHR = 5.60, 95% CI: 1.65, 19.05), co-morbid conditions (AHR = 2.74 CI: 1.12, 6.68), and anemia (AHR = 3.25 CI: 1.40, 7.53) were significant predictors of major adverse drug events. Conclusion The incidence rate of major adverse drug events in the early 6 months of treatment was higher than that of the subsequent months. Age above 25 years, base line anemia, and co-morbid conditions were independent predictors of adverse drug events. Thus, addressing significant predictors and strengthening continuous follow-ups are highly recommended in the study setting.
Collapse
Affiliation(s)
- Mehari Woldemariam Merid
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia
| | - Lemma Derseh Gezie
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia
| | - Getahun Molla Kassa
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia
| | - Atalay Goshu Muluneh
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia
| | - Temesgen Yihunie Akalu
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Kindie Yenit
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health sciences, University of Gondar, Gondar, Ethiopia.
| |
Collapse
|
24
|
Beberok A, Rzepka Z, Respondek M, Rok J, Stradowski M, Wrześniok D. Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular level. Toxicol In Vitro 2019; 55:75-92. [DOI: 10.1016/j.tiv.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022]
|
25
|
Alsuhaibani M, Felimban G, Shoukri M, Alosaimi A, Almohaizeie A, AlHajjar S. Safety and tolerability of moxifloxacin for the treatment of disseminated BCGitis in children. Int J Pediatr Adolesc Med 2019; 6:47-50. [PMID: 31388545 PMCID: PMC6676312 DOI: 10.1016/j.ijpam.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
Abstract
Background and objective Disseminated BCGitis is a rare but serious complication of BCG vaccine in patients with underlying primary immunodeficiency. Fluoroquinolone antibiotics containing antimycobacterial regimen have been considered in the treatment of disseminated BCGitis, but there are limited data about the dosing, safety, and tolerability of fluoroquinolone such as moxifloxacin in children. The aim of this study was to report the experience with the dosing, safety, and tolerability of moxifloxacin in children with disseminated BCGitis. Method This retrospective descriptive study included children who had been diagnosed with disseminated BCGitis and treated with an antimycobacterial regimen including moxifloxacin for more than two weeks from 2007 to 2017 at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. Result Ten children were included: six (60.0%) were male and four (40.0%) were female. The primary diagnosis for five patients was Mendelian susceptibility to mycobacterial diseases (MSMD), four patients were diagnosed with severe combined immune deficiency (SCID), and the remaining patient had human immunodeficiency virus (HIV) infection. The overall mean duration of moxifloxacin treatment was 10.1 months. Liver toxicity was recorded in three patients. The most common medications used with moxifloxacin were ethambutol and clarithromycin. Moxifloxacin serum concentration level was determined in 5 patients. No musculoskeletal side effects were reported while the patient was on moxifloxacin. The treated patients showed a different response to an antimycobacterial regimen including moxifloxacin, with mortality in two patients. Conclusion Our study suggests that moxifloxacin is generally tolerated in children and might be considered in disseminated BCGitis cases. Additionally, paying attention to side effects such as liver toxicity is recommended, particularly with the use of other antimycobacterial antibiotics, which could also be hepatotoxic. A moxifloxacin-containing regimen for disseminated BCGitis showed clinical improvement in some patients in this study, although the majority presented the same clinical condition.
Collapse
Affiliation(s)
- Mohammed Alsuhaibani
- Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Ghada Felimban
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Cell Biology and National Biotechnology Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Alosaimi
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Almohaizeie
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sami AlHajjar
- Department of Pediatrics, Section of Infectious Disease, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Gregory ER, Osborne SB, Gardner BM, Broughton RA. Trimethoprim/Sulfamethoxazole and Moxifloxacin Therapy for a Pediatric Stenotrophomonas Maltophilia Ventriculoperitoneal Shunt Infection. J Pediatr Pharmacol Ther 2019; 24:61-65. [PMID: 30837817 DOI: 10.5863/1551-6776-24.1.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stenotrophomonas maltophilia is an increasingly prevalent cause of nosocomial infections. This report describes a 5-month-old male diagnosed with a S maltophilia ventriculoperitoneal shunt infection after a neurosurgical procedure. Intravenous trimethoprim/sulfamethoxazole and moxifloxacin successfully treated the patient. A literature review revealed a scarcity of similar reports, with none using moxifloxacin as an effective concomitant treatment with trimethoprim-sulfamethoxazole.
Collapse
|
27
|
Loitegui MA, Muñoz CG, Sevilla MG, Espinoza CR, Ferrari Piquero JM. [Clofazimine suspension formulation for treating extremely resistant tuberculosis in a nursing patient]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2019; 32:561-563. [PMID: 31648511 PMCID: PMC6913083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- María Arrieta Loitegui
- Correspondencia: María Arrieta Loitegui Servicio de Farmacia, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid Tfno.: 913908005 E-mail:
| | | | | | | | | |
Collapse
|
28
|
Huynh J, Marais BJ. Multidrug-resistant tuberculosis infection and disease in children: a review of new and repurposed drugs. Ther Adv Infect Dis 2019; 6:2049936119864737. [PMID: 31367376 PMCID: PMC6643170 DOI: 10.1177/2049936119864737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
The World Health Organization estimates that 10 million new cases of tuberculosis (TB) occurred worldwide in 2017, of which 600,000 were rifampicin or multidrug-resistant (RR/MDR) TB. Modelling estimates suggest that 32,000 new cases of MDR-TB occur in children annually, but only a fraction of these are correctly diagnosed and treated. Accurately diagnosing TB in children, who usually have paucibacillary disease, and implementing effective TB prevention and treatment programmes in resource-limited settings remain major challenges. In light of the underappreciated RR/MDR-TB burden in children, and the lack of paediatric data on newer drugs for TB prevention and treatment, we present an overview of new and repurposed TB drugs, describing the available evidence for safety and efficacy in children to assist clinical care and decision-making.
Collapse
Affiliation(s)
- Julie Huynh
- Department of Infectious Diseases and
Microbiology, The Children’s Hospital Westmead, New South Wales, 2145,
Australia
- Discipline of Child and Adolescent Health,
University of Sydney, The Children’s Hospital Westmead, Westmead, New South
Wales, 2145, Australia
| | - Ben J. Marais
- Department of Infectious Diseases and
Microbiology, The Children’s Hospital Westmead, New South Wales,
Australia
- Discipline of Child and Adolescent Health,
University of Sydney, The Children’s Hospital Westmead, New South Wales,
Australia
- Marie Bashir Institute for Infectious Diseases
and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
McIlleron H, Chirehwa MT. Current research toward optimizing dosing of first-line antituberculosis treatment. Expert Rev Anti Infect Ther 2018; 17:27-38. [PMID: 30501530 PMCID: PMC6364307 DOI: 10.1080/14787210.2019.1555031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Drug concentrations in tuberculosis patients on standard regimens vary widely with clinically important consequences. Areas covered: We review the available literature identifying factors correlated with pharmacokinetic variability of antituberculosis drugs. Based on population pharmacokinetic models and the weight, height, and sex distributions in a large data base of African tuberculosis patients, we propose simplified weight-based doses of the available fixed dose combination(FDC) for adults with drug susceptible tuberculosis. Emerging studies will support optimized weight-based dosing for children. Other sources of important pharmacokinetic variability include genetic variants, drug-drug interactions, formulation quality, and methods of preparation and administration. Expert commentary: Optimized weight band-based dosing will result in more equitable distribution of drug exposures by weight. The use of high doses of isoniazid in patients with drug-resistant tuberculosis would be safer and more effective if a feasible test was developed to allow stratified dosing according to acetylator type. There is an urgent need for more suitable formulations of many second-line drugs for children. The adoption of new technologies and efficient FDC design may allow further advances for patients and treatment programs. Lastly, current efforts to ensure adequate quality of antituberculosis drug products are not preventing the use of substandard products to treat patients with tuberculosis.
Collapse
Affiliation(s)
- Helen McIlleron
- a Division of Clinical Pharmacology, Department of Medicine , University of Cape Town , Cape Town , South Africa
| | - Maxwell T Chirehwa
- a Division of Clinical Pharmacology, Department of Medicine , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
30
|
Krutikov M, Bruchfeld J, Migliori GB, Borisov S, Tiberi S. New and repurposed drugs. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10021517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Dixit A, Karandikar MV, Jones S, Nakamura MM. Safety and Tolerability of Moxifloxacin in Children. J Pediatric Infect Dis Soc 2018; 7:e92-e101. [PMID: 29939314 DOI: 10.1093/jpids/piy056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/07/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Moxifloxacin is not approved by the US Food and Drug Administration for pediatric use. Although its use might be indicated under certain conditions, data regarding its safety and tolerability in pediatric patients are limited. The primary objective of this study was to evaluate the safety of systemic moxifloxacin therapy in children. METHODS We conducted a retrospective observational study of patients aged <18 years who received oral or intravenous moxifloxacin at our institution between January 2011 and July 2016. Patient demographics, clinical characteristics, indication for moxifloxacin use, and adverse events (AEs) were extracted via chart review. The attribution of AEs to moxifloxacin use was adjudicated in consultation with a pediatric infectious disease (ID) pharmacist. RESULTS We identified 221 patients who received 300 courses of moxifloxacin. The average age at moxifloxacin initiation was 10.4 years. One or more AEs occurred during 195 (65%) of the courses. Of the 463 distinct AEs, 46 (9.9%) were attributed to moxifloxacin. AEs attributed to moxifloxacin included corrected QT interval (QTc) prolongation (18 [6%] courses), transaminase level elevation (7 [2.3%] courses), and increased bilirubin level (3 [1%] courses). AEs led to moxifloxacin discontinuation in 18 (6%) courses. ID consultation was associated with QTc (P < .001) and transaminase (P = .002) monitoring. CONCLUSIONS AEs that occur during pediatric moxifloxacin therapy are relatively common but rarely serious enough to require premature discontinuation. The drug might be used safely in most children with monitoring, including evaluation for QTc prolongation, and guidance from ID specialists.
Collapse
Affiliation(s)
- Avika Dixit
- Division of Infectious Diseases, Boston Children's Hospital, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Manjiree V Karandikar
- Division of Infectious Diseases, Boston Children's Hospital, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah Jones
- Division of Infectious Diseases, Boston Children's Hospital, Massachusetts.,Department of Pharmacy, Boston Children's Hospital, Massachusetts
| | - Mari M Nakamura
- Division of Infectious Diseases, Boston Children's Hospital, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of General Pediatrics, Boston Children's Hospital, Massachusetts
| |
Collapse
|
32
|
Schnippel K, Firnhaber C, Berhanu R, Page-Shipp L, Sinanovic E. Adverse drug reactions during drug-resistant TB treatment in high HIV prevalence settings: a systematic review and meta-analysis. J Antimicrob Chemother 2018; 72:1871-1879. [PMID: 28419314 DOI: 10.1093/jac/dkx107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/13/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives To estimate the prevalence of adverse drug reactions or events (ADR) during drug-resistant TB (DR-TB) treatment in the context of settings with high HIV prevalence (at least 20% of patients). Methods We conducted a systematic review and meta-analysis of articles in PubMed and Scopus. Pooled proportions of patients experiencing adverse events and relative risk with 95% CI were calculated. Results The search yielded 24 studies, all observational cohorts. Ten reported on the number of patients experiencing ADR and were included in the meta-analysis representing 2776 study participants of whom 1943 were known to be HIV infected (70.0%). An average of 83% (95% CI: 82%-84%) of patients experienced one or more ADR. Among the seven articles ( n = 664 study participants) with information on occurrence of severe ADR, 24% (95% CI: 21%-27%) of patients experienced at least one severe ADR during drug-resistant TB treatment. Sixteen of the 24 studies analysed the relative risk of ADR by HIV infection, nine of which found no statistically significant association between HIV infection and occurrence of drug-related ADR. There was insufficient information to disaggregate risk by concomitant treatment with HIV antiretrovirals or by immunosuppression (CD4 count). Conclusions No randomized clinical trials were found for WHO-recommended treatment of drug-resistant TB treatment where at least 20% of the cohort was coinfected with HIV. Nearly all patients (83%) experience ADR during DR-TB treatment. While no significant association between ADR and HIV coinfection was found, further research is needed to determine whether concomitant antiretrovirals or immunosuppression increases the risks for HIV-infected patients.
Collapse
Affiliation(s)
- Kathryn Schnippel
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Right to Care, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Right to Care, Johannesburg, South Africa.,Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca Berhanu
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Health Economics & Epidemiology Research Office, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Edina Sinanovic
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Pharmacokinetics of Second-Line Antituberculosis Drugs in Children with Multidrug-Resistant Tuberculosis in India. Antimicrob Agents Chemother 2018; 62:AAC.02410-17. [PMID: 29463539 DOI: 10.1128/aac.02410-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
We studied the pharmacokinetics of levofloxacin (LFX), pyrazinamide (PZA), ethionamide (ETH), and cycloserine (CS) in children with multidrug-resistant tuberculosis (MDR-TB) who were being treated according to the Revised National TB Control Programme (RNTCP) guidelines in India. This observational, pharmacokinetic study was conducted in 25 children with MDR-TB at the Sarojini Naidu Medical College, Agra, India, who were being treated with a 24-month daily regimen. Serial blood samples were collected after directly observed administration of drugs. Estimations of plasma LFX, PZA, ETH, and CS were undertaken according to validated methods by high-performance liquid chromatography. Adverse events were noted at 6 months of treatment. The peak concentration (Cmax) of LFX was significantly higher in female than male children (11.5 μg/ml versus 7.3 μg/ml; P = 0.017). Children below 12 years of age had significantly higher ETH exposure (area under the concentration-time curve from 0 to 8 h [AUC0-8]) than those above 12 years of age (17.5 μg/ml · h versus 9.4 μg/ml; P = 0.030). Multiple linear regression analysis showed significant influence of gender on Cmax of ETH and age on Cmax and AUC0-8 of CS. This is the first and only study from India reporting on the pharmacokinetics of LFX, ETH, PZA, and CS in children with MDR-TB treated in the Government of India program. More studies on the safety and pharmacokinetics of second-line anti-TB drugs in children with MDR-TB from different settings are required.
Collapse
|
34
|
Mellado Peña MJ, Santiago García B, Baquero-Artigao F, Moreno Pérez D, Piñeiro Pérez R, Méndez Echevarría A, Ramos Amador JT, Gómez-Pastrana Durán D, Noguera Julian A. Tuberculosis treatment for children: An update. An Pediatr (Barc) 2018. [DOI: 10.1016/j.anpede.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Schaaf HS, Garcia-Prats AJ, McKenna L, Seddon JA. Challenges of using new and repurposed drugs for the treatment of multidrug-resistant tuberculosis in children. Expert Rev Clin Pharmacol 2017; 11:233-244. [DOI: 10.1080/17512433.2018.1421067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- H. Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - James A. Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| |
Collapse
|
36
|
Srivastava S, Deshpande D, Pasipanodya J, Nuermberger E, Swaminathan S, Gumbo T. Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks. Clin Infect Dis 2017; 63:S102-S109. [PMID: 27742641 PMCID: PMC5064158 DOI: 10.1093/cid/ciw483] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jotam Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine Department of International Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
37
|
Deshpande D, Srivastava S, Nuermberger E, Pasipanodya JG, Swaminathan S, Gumbo T. Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo. Clin Infect Dis 2017; 63:S88-S94. [PMID: 27742639 PMCID: PMC5064154 DOI: 10.1093/cid/ciw473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background. No treatment regimens have been specifically designed for children, in whom tuberculosis is predominantly intracellular. Given their activity as monotherapy and their ability to penetrate many diseased anatomic sites that characterize disseminated tuberculosis, linezolid and moxifloxacin could be combined to form a regimen for this need. Methods. We examined microbial kill of intracellular Mycobacterium tuberculosis (Mtb) by the combination of linezolid and moxifloxacin multiple exposures in a 7-by-7 mathematical matrix. We then used the hollow fiber system (HFS) model of intracellular tuberculosis to identify optimal dose schedules and exposures of moxifloxacin and linezolid in combination. We mimicked pediatric half-lives and concentrations achieved by each drug. We sampled the peripheral compartment on days 0, 7, 14, 21, and 28 for Mtb quantification, and compared the slope of microbial kill of Mtb by these regimens to the standard regimen of isoniazid, rifampin, and pyrazinamide, based on exponential decline regression. Results. The full exposure-response surface identified linezolid-moxifloxacin zones of synergy, antagonism, and additivity. A regimen based on each of these zones was then used in the HFS model, with observed half-lives of 4.08 ± 0.66 for linezolid and 3.80 ± 1.34 hours for moxifloxacin. The kill rate constant was 0.060 ± 0.012 per day with the moxifloxacin-linezolid regimen in the additivity zone vs 0.083 ± 0.011 per day with standard therapy, translating to a bacterial burden half-life of 11.52 days vs 8.53 days, respectively. Conclusions. We identified doses and dose schedules of a linezolid and moxifloxacin backbone regimen that could be highly efficacious in disseminated tuberculosis in children.
Collapse
Affiliation(s)
- Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine Department of International Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
38
|
Sabin AP, Ferrieri P, Kline S. Mycobacterium abscessus Complex Infections in Children: A Review. Curr Infect Dis Rep 2017; 19:46. [PMID: 28983867 PMCID: PMC5821427 DOI: 10.1007/s11908-017-0597-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Infections in children with Mycobacterium abscessus complex represent a particular challenge for clinicians. Increasing incidence of these infections worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. Published medical literature was reviewed, with emphasis on material published in the past 5 years. RECENT FINDINGS Increasing availability of new diagnostic tools, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and custom PCRs, has provided unique insights into the subspecies within the complex and improved diagnostic certainty. Microbiological review of all recent isolates at the University of Minnesota Medical Center was also conducted, with description of the antimicrobial sensitivity patterns encountered in our center, and compared with those published from other centers in the recent literature. A discussion of conventional antimicrobial treatment regimens, alongside detailed description of the relevant antimicrobials, is derived from recent publications. Antimicrobial therapy, combined with surgical intervention in some cases, remains the mainstay of pediatric care. Ongoing questions remain regarding the transmission mechanics, immunologic vulnerabilities exploited by these organisms in the host, and the optimal antimicrobial regimens necessary to enable a reliable cure. Updated treatment guidelines based on focused clinical studies in children and accounting especially for the immunocompromised children at greatest risk are very much needed.
Collapse
Affiliation(s)
- Arick P Sabin
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA
| | - Patricia Ferrieri
- Department of Laboratory Medicine and Pathology and Department of Pediatrics, Division of Infectious Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Susan Kline
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA.
| |
Collapse
|
39
|
Mukherjee A, Lodha R, Kabra SK. Current therapies for the treatment of multidrug-resistant tuberculosis in children in India. Expert Opin Pharmacother 2017; 18:1595-1606. [PMID: 28847228 PMCID: PMC5942143 DOI: 10.1080/14656566.2017.1373090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Multidrug-resistant tuberculosis (MDR-TB) is a serious life threatening condition affecting children as well as adults worldwide. Timely diagnosis and effective treatment, both of which are complex in children, are the prerogatives for a favorable outcome. Areas covered: This review covers epidemiology, treatment regimen and duration, newer drugs and adverse events in children with MDR-TB. Special note has been made of epidemiology and principles of treatment followed in Indian children. Expert opinion: High index of suspicion is essential for diagnosing childhood MDR-TB. If there is high probability, a child can be diagnosed as presumptive MDR-TB and started on empiric treatment in consultation with experts. However, every effort should be made to confirm the diagnosis. Backbone of an effective MDR-TB regimen consists of four 2nd line anti-TB drugs plus pyrazinamide; duration being 18-24 months. The newer drugs delamanid and bedaquiline can be used in younger children if no other alternatives are available after consultation with experts. Wider availability of these drugs should be ensured for benefit to all concerned. More research is required for development of new and repurposed drugs to combat MDR-TB. Children need to be included in clinical trials for such life-saving drugs, so that nobody is denied the benefits.
Collapse
Affiliation(s)
- Aparna Mukherjee
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A Review of Moxifloxacin for the Treatment of Drug-Susceptible Tuberculosis. J Clin Pharmacol 2017; 57:1369-1386. [PMID: 28741299 DOI: 10.1002/jcph.968] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/21/2017] [Indexed: 11/08/2022]
Abstract
Moxifloxacin, an 8-methoxy quinolone, is an important drug in the treatment of multidrug-resistant tuberculosis and is being investigated in novel drug regimens with pretomanid, bedaquiline, and pyrazinamide, or rifapentine, for the treatment of drug-susceptible tuberculosis. Early results of these studies are promising. Although current evidence does not support the use of moxifloxacin in treatment-shortening regimens for drug-susceptible tuberculosis, it may be recommended in patients unable to tolerate standard first-line drug regimens or for isoniazid monoresistance. Evidence suggests that the standard 400-mg dose of moxifloxacin used in the treatment of tuberculosis may be suboptimal in some patients, leading to worse tuberculosis treatment outcomes and emergence of drug resistance. Furthermore, a drug interaction with the rifamycins results in up to 31% reduced plasma concentrations of moxifloxacin when these are combined for treatment of drug-susceptible tuberculosis, although the clinical relevance of this interaction is unclear. Moxifloxacin exhibits extensive interindividual pharmacokinetic variability. Higher doses of moxifloxacin may be needed to achieve drug exposures required for improved clinical outcomes. Further study is, however, needed to determine the safety of proposed higher doses and clinically validated targets for drug exposure to moxifloxacin associated with improved tuberculosis treatment outcomes. We discuss in this review the evidence for the use of moxifloxacin in drug-susceptible tuberculosis and explore the role of moxifloxacin pharmacokinetics, pharmacodynamics, and drug interactions with rifamycins, on tuberculosis treatment outcomes when used in first-line tuberculosis drug regimens.
Collapse
Affiliation(s)
- Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sabiha Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
41
|
Mellado Peña MJ, Santiago García B, Baquero-Artigao F, Moreno Pérez D, Piñeiro Pérez R, Méndez Echevarría A, Ramos Amador JT, Gómez-Pastrana Durán D, Noguera Julian A. [Tuberculosis treatment for children: An update]. An Pediatr (Barc) 2017; 88:52.e1-52.e12. [PMID: 28729186 DOI: 10.1016/j.anpedi.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis (TB) is the most important infectious disease all over the world, with a high morbidity and mortality. Pediatric tuberculosis has been a neglected epidemic, due to the difficulties in assessing its global impact, reduced incidence and lower infectivity compared to adults. In 2015, the WHO reported 1 million cases of paediatric TB and 169,000 deaths. In Europe, the emergence of MDR TB is a major concern, representing 16% of the new diagnosis in Eastern Europe. In 2014, it was estimated that about 219,000 children were infected by MDR-TB-strains in Europe, and 2,120 developed the disease. Spain is the Western European country with more paediatric cases, with an incidence 4.3/100,000 inhabitants in 2014. Paediatric tuberculosis mortality in Spain is rare, but extra-pulmonary disease is associated with significant complications. The prevalence of paediatric drug resistant TB in Spain is over 4%, higher than the estimated incidence in adult population, representing mayor difficulties for therapeutic intervention. These data reveal that paediatric TB is still a Public Health priority in our country. The difficulties in diagnosis and the lack of optimal paediatric drug formulations are the major challenges for controlling the childhood's tuberculosis epidemic. A group of national paeditric TB experts has reviewed the international guidelines and the most recent evidences, and has established new recommendations for the management of paediatric TB contacts, latent infection and active TB disease, especially focused in drug resistant cases. This document replaces the former national guidelines from the Spanish Society for Pediatric Infectios Diseases, although the prior recommendations on the diagnosis remain valid.
Collapse
Affiliation(s)
- María José Mellado Peña
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España; European Network of Excellence for Paediatric Clinical Research (TEDDY), España.
| | - Begoña Santiago García
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | - Fernando Baquero-Artigao
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | - David Moreno Pérez
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | - Roi Piñeiro Pérez
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España; European Network of Excellence for Paediatric Clinical Research (TEDDY), España
| | - Ana Méndez Echevarría
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | - José Tomás Ramos Amador
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | - David Gómez-Pastrana Durán
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Neumología Pediátrica (SENP), España
| | - Antoni Noguera Julian
- Red Española de Estudio de la Tuberculosis Pediátrica (pTBred), España; Sociedad Española de Infectología Pediátrica (SEIP), España; Red Española de Investigación Traslacional en Infectología Pediátrica (RITIP), España
| | | |
Collapse
|
42
|
Jaganath D, Schaaf HS, Donald PR. Revisiting the mutant prevention concentration to guide dosing in childhood tuberculosis. J Antimicrob Chemother 2017; 72:1848-1857. [PMID: 28333284 PMCID: PMC5890770 DOI: 10.1093/jac/dkx051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mutant prevention concentration (MPC) is a well-known concept in the chemotherapy of many bacterial infections, but is seldom considered in relation to tuberculosis (TB) treatment, as the required concentrations are generally viewed as unachievable without undue toxicity. Early studies revealed single mutations conferring high MICs of first- and second-line anti-TB agents; however, the growing application of genomics and quantitative drug susceptibility testing in TB suggests a wide range of MICs often determined by specific mutations and strain type. In paediatric TB, pharmacokinetic studies indicate that despite increasing dose recommendations, a proportion of children still do not achieve adult-derived targets. When considering the next stage in anti-TB drug dosing and the introduction of novel therapies for children, we suggest consideration of MPC and its incorporation into pharmacokinetic studies to more accurately determine appropriate concentration targets in children, to restrict the growth of resistant mutants and better manage drug-resistant TB.
Collapse
Affiliation(s)
- Devan Jaganath
- Department of Paediatrics, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA
| | - H. Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Peter R. Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
43
|
Rabie H, Decloedt EH, Garcia-Prats AJ, Cotton MF, Frigati L, Lallemant M, Hesseling A, Schaaf HS. Antiretroviral treatment in HIV-infected children who require a rifamycin-containing regimen for tuberculosis. Expert Opin Pharmacother 2017; 18:589-598. [PMID: 28346018 DOI: 10.1080/14656566.2017.1309023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION In high prevalence settings, tuberculosis and HIV dual infection and co-treatment is frequent. Rifamycins, especially rifampicin, in combination with isoniazid, ethambutol and pyrazinamide are key components of short-course antituberculosis therapy. Areas covered: We reviewed available data, for which articles were identified by a Pubmed search, on rifamycin-antiretroviral interactions in HIV-infected children. Rifamycins have potent inducing effects on phase I and II drug metabolising enzymes and transporters. Antiretroviral medications are often metabolised by the enzymes induced by rifamycins or may suppress specific enzyme activity leading to drug-drug interactions with rifamycins. These may cause significant alterations in their phamacokinetic and pharmacodynamic properties, and sometimes that of the rifamycin. Recommended strategies to adapt to these interactions include avoidance and dose adjustment. Expert opinion: Despite the importance and frequency of tuberculosis as an opportunistic disease in HIV-infected children, current data on the management of co-treated children is based on few studies. We need new strategies to rapidly assess the use of rifamycins, new anti-tuberculosis drugs and antiretroviral drugs together as information on safety and dosing of individual drugs becomes available.
Collapse
Affiliation(s)
- Helena Rabie
- a Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University and Tygerberg Hospital , Cape Town , South Africa.,b Children's Infectious Diseases Clinical Research Unit , Stellenbosch University , Cape Town , South Africa
| | - Eric H Decloedt
- c Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences , Stellenbosch University and Tygerberg Hospital , Cape Town , South Africa
| | - Anthony J Garcia-Prats
- d Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Mark F Cotton
- a Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University and Tygerberg Hospital , Cape Town , South Africa.,b Children's Infectious Diseases Clinical Research Unit , Stellenbosch University , Cape Town , South Africa
| | - Lisa Frigati
- a Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University and Tygerberg Hospital , Cape Town , South Africa.,b Children's Infectious Diseases Clinical Research Unit , Stellenbosch University , Cape Town , South Africa
| | - Marc Lallemant
- e Pediatric HIV Program , Drugs for Neglected Diseases Initiative , Geneva , Switzerland
| | - Anneke Hesseling
- d Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - H Simon Schaaf
- a Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University and Tygerberg Hospital , Cape Town , South Africa.,d Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
44
|
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G, van Helden P, Niemann S, Merker M, Dowdy D, Van Rie A, Siu GKH, Pasipanodya JG, Rodrigues C, Clark TG, Sirgel FA, Esmail A, Lin HH, Atre SR, Schaaf HS, Chang KC, Lange C, Nahid P, Udwadia ZF, Horsburgh CR, Churchyard GJ, Menzies D, Hesseling AC, Nuermberger E, McIlleron H, Fennelly KP, Goemaere E, Jaramillo E, Low M, Jara CM, Padayatchi N, Warren RM. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. THE LANCET. RESPIRATORY MEDICINE 2017; 5:S2213-2600(17)30079-6. [PMID: 28344011 DOI: 10.1016/s2213-2600(17)30079-6] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues.
Collapse
Affiliation(s)
- Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa.
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth McNerney
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Megan Murray
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward A Nardell
- TH Chan School of Public Health, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie London
- School of Public Health and Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Grant Theron
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Paul van Helden
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; German Centre for Infection Research (DZIF), Partner Site Borstel, Borstel, Schleswig-Holstein, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany
| | - David Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Annelies Van Rie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Gilman K H Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Camilla Rodrigues
- Department of Microbiology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases and Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Frik A Sirgel
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Aliasgar Esmail
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Hsien-Ho Lin
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Sachin R Atre
- Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA; Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Christoph Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany; Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Payam Nahid
- Division of Pulmonary and Critical Care, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Zarir F Udwadia
- Pulmonary Department, Hinduja Hospital & Research Center, Mumbai, India
| | | | - Gavin J Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Advancing Treatment and Care for TB/HIV, South African Medical Research Council, Johannesburg, South Africa
| | - Dick Menzies
- Montreal Chest Institute, McGill University, Montreal, QC, Canada
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kevin P Fennelly
- Pulmonary Clinical Medicine Section, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eric Goemaere
- MSF South Africa, Cape Town, South Africa; School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marcus Low
- Treatment Action Campaign, Johannesburg, South Africa
| | | | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), MRC HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Robin M Warren
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
45
|
McAnaw SE, Hesseling AC, Seddon JA, Dooley KE, Garcia-Prats AJ, Kim S, Jenkins HE, Schaaf HS, Sterling TR, Horsburgh CR. Pediatric multidrug-resistant tuberculosis clinical trials: challenges and opportunities. Int J Infect Dis 2017; 56:194-199. [PMID: 27955992 PMCID: PMC5606236 DOI: 10.1016/j.ijid.2016.11.423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022] Open
Abstract
On June 17, 2016, RESIST-TB, IMPAACT, Vital Strategies, and New Ventures jointly hosted the Pediatric Multidrug Resistant Tuberculosis Clinical Trials Landscape Meeting in Arlington, Virginia, USA. The meeting provided updates on current multidrug-resistant tuberculosis (MDR-TB) trials targeting pediatric populations and adult trials that have included pediatric patients. A series of presentations were given that discussed site capacity needs, community engagement, and additional interventions necessary for clinical trials to improve the treatment of pediatric MDR-TB. This article presents a summary of topics discussed, including the following: current trials ongoing and planned; the global burden of MDR-TB in children; current regimens for MDR-TB treatment in children; pharmacokinetics of second-line anti-tuberculosis medications in children; design, sample size, and statistical considerations for MDR-TB trials in children; selection of study population, design, and treatment arms for a trial of novel pediatric MDR-TB regimens; practical aspects of pediatric MDR-TB treatment trials; and strategies for integrating children into adult tuberculosis trials. These discussions elucidated barriers to pediatric MDR-TB clinical trials and provided insight into necessary next steps for progress in this field. Investigators and funding agencies need to respond to these recommendations so that important studies can be implemented, leading to improved treatment for children with MDR-TB.
Collapse
Affiliation(s)
- S E McAnaw
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA.
| | - A C Hesseling
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - J A Seddon
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - K E Dooley
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - A J Garcia-Prats
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - S Kim
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - H E Jenkins
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - H S Schaaf
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - T R Sterling
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| | - C R Horsburgh
- RESIST TB, 801 Massachusetts Avenue, suite 389, Boston, MA 202118, USA
| |
Collapse
|
46
|
Evangelopoulos D, Whittaker E, Honeyborne I, McHugh TD, Klein N, Shingadia D. Pediatric tuberculosis-human immunodeficiency virus co-infection in the United Kingdom highlights the need for better therapy monitoring tools: a case report. J Med Case Rep 2017; 11:52. [PMID: 28236807 PMCID: PMC5326674 DOI: 10.1186/s13256-017-1222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis is an infection that requires at least 6 months of chemotherapy in order to clear the bacteria from the patient’s lungs. Usually, therapeutic monitoring is dependent on smear microscopy where a decline in acid-fast bacilli is observed. However, this might not be indicative of the actual decline of bacterial load and thus other tools such as culture and molecular assays are required for patient management. Case presentation Here, we report the case of a 12-year-old Black African boy co-infected with tuberculosis and human immunodeficiency virus who remained smear culture positive and liquid culture negative for a prolonged period of time following chemotherapy. In order to determine whether there was any live bacteria present in his specimens, we applied the newly developed molecular bacterial load assay that detects the presence of 16S ribosomal ribonucleic acid derived from the bacteria. Using this methodology, we were able to quantify his bacterial load and inform the management of his treatment in order to reduce the disease burden. Following this intervention he went on to make a complete recovery. Conclusions This case report highlights the value of improved biomarkers for monitoring the treatment of tuberculosis and the role of molecular assays such as the molecular bacterial load assay applied here. The molecular bacterial load assay detects bacterial ribonucleic acid which corresponds closely with the number of live bacilli as compared with polymerase chain reaction that detects deoxyribonucleic acid and may include dead bacteria.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK. .,Present address: Laboratory of Mycobacterial Metabolism and Antibiotic Research, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Elizabeth Whittaker
- Department of Academic Paediatrics, Imperial College London, London, W2 1PG, UK.,Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Isobella Honeyborne
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| | - Nigel Klein
- Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Delane Shingadia
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| |
Collapse
|
47
|
Deshpande D, Srivastava S, Nuermberger E, Pasipanodya JG, Swaminathan S, Gumbo T. A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clin Infect Dis 2016; 63:S95-S101. [PMID: 27742640 PMCID: PMC5064155 DOI: 10.1093/cid/ciw474] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The regimen of linezolid and moxifloxacin was found to be efficacious in the hollow fiber system model of pediatric intracellular tuberculosis. However, its kill rate was slower than the standard 3-drug regimen of isoniazid, rifampin, and pyrazinamide. We wanted to examine the effect of adding a third oral agent, faropenem, to this dual combination. METHODS We performed a series of studies in the hollow fiber system model of intracellular Mycobacterium tuberculosis, by mimicking pediatric pharmacokinetics of each antibiotic. First, we varied the percentage of time that faropenem persisted above minimum inhibitory concentration (TMIC) on the moxifloxacin-linezolid regimen. After choosing the best faropenem exposure, we performed experiments in which we varied the moxifloxacin and linezolid doses in the triple regimen. Finally, we performed longer-duration therapy validation experiments. Bacterial burden was quantified using both colony-forming units per milliliter (CFU/mL) and time to positivity (TTP). Kill slopes were modeled using exponential regression. RESULTS TTP was a more sensitive measure of bacterial burden than CFU/mL. A faropenem TMIC > 62% was associated with steepest microbial kill slope. Regimens of standard linezolid and moxifloxacin plus faropenem TMIC > 60%, as well as higher-dose moxifloxacin, achieved slopes equivalent to those of the standard regimen based by both TTP and CFU/mL over 28 days of treatment. CONCLUSIONS We have developed an oral faropenem-linezolid-moxifloxacin (FLAME) regimen that is free of first-line drugs. The regimen could be effective against both multidrug-resistant and drug-susceptible tuberculosis in children.
Collapse
Affiliation(s)
- Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine Department of International Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
48
|
Patel K, Goldman JL. Safety Concerns Surrounding Quinolone Use in Children. J Clin Pharmacol 2016; 56:1060-75. [PMID: 26865283 PMCID: PMC4994191 DOI: 10.1002/jcph.715] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 02/02/2023]
Abstract
Fluoroquinolones are highly effective antibiotics with many desirable pharmacokinetic and pharmacodynamic properties including high bioavailability, large volume of distribution, and a broad spectrum of antimicrobial activity. Despite their attractive profile as anti-infective agents, their use in children is limited, primarily due to safety concerns. In this review we highlight the pharmacological properties of fluoroquinolones and describe their current use in pediatrics. In addition, we provide a comprehensive assessment of the safety data associated with fluoroquinolone use in children. Although permanent or destructive arthropathy remains a significant concern, currently available data demonstrate that arthralgia and arthropathy are relatively uncommon in children and resolve following cessation of fluoroquinolone exposure without resulting in long-term sequelae. The concern for safety and risk of adverse events associated with pediatric fluoroquinolone use is likely driving the limited prescribing of this drug class in pediatrics. However, in adults, fluoroquinolones are the most commonly prescribed broad-spectrum antibiotics, resulting in the development of drug-resistant bacteria that can be challenging to treat effectively. The consequence of misuse and overuse of fluoroquinolones leading to drug resistance is a greater, but frequently overlooked, safety concern that applies to both children and adults and one that should be considered at the point of prescribing.
Collapse
Affiliation(s)
- Karisma Patel
- Department of Pharmacy, Children’s Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, USA
- Divisions of Pediatric Infectious Diseases, Children’s Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jennifer L. Goldman
- Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, USA
- Divisions of Pediatric Infectious Diseases, Children’s Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, USA
- Clinical Pharmacology, Children’s Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
49
|
Schaaf HS, Thee S, van der Laan L, Hesseling AC, Garcia-Prats AJ. Adverse effects of oral second-line antituberculosis drugs in children. Expert Opin Drug Saf 2016; 15:1369-81. [PMID: 27458876 DOI: 10.1080/14740338.2016.1216544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Increasing numbers of children with drug-resistant tuberculosis are accessing second-line antituberculosis drugs; these are more toxic than first-line drugs. Little is known about the safety of new antituberculosis drugs in children. Knowledge of adverse effects, and how to assess and manage these, is important to ensure good adherence and treatment outcomes. AREAS COVERED A Pubmed search was performed to identify articles addressing adverse effects of second-line antituberculosis drugs; a general search was done for the new drugs delamanid and bedaquiline. This review discusses adverse effects associated with oral second-line antituberculosis drugs. The spectrum of adverse effects caused by antituberculosis drugs is wide; the majority are mild or moderate, but these are important to manage as it could lead to non-adherence to treatment. Adverse effects may be more common in HIV-infected than in HIV-uninfected children. EXPERT OPINION Although children may experience fewer adverse effects from oral second-line antituberculosis drugs than adults, evidence from prospective studies of the incidence of adverse events in children is limited. Higher doses of second-line drugs, new antituberculosis drugs, and new drug regimens are being evaluated in children: these call for strict pharmacovigilance in children treated in the near future, as adverse effect profiles may change.
Collapse
Affiliation(s)
- H Simon Schaaf
- a Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Stephanie Thee
- b Department of Paediatric Pneumology and Immunology , Charité, Universitätsmedizin Berlin , Berlin , Germany
| | - Louvina van der Laan
- a Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Anneke C Hesseling
- a Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Anthony J Garcia-Prats
- a Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
50
|
Mafukidze A, Harausz E, Furin J. An update on repurposed medications for the treatment of drug-resistant tuberculosis. Expert Rev Clin Pharmacol 2016; 9:1331-1340. [DOI: 10.1080/17512433.2016.1208562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|